Advertisement

A chiral quark model for meson electroproduction in the region of D-wave resonances

  • B. GolliEmail author
  • S. Širca
Regular Article - Theoretical Physics

Abstract

The meson scattering and electroproduction amplitudes in the D13 , D33 and D15 partial waves are calculated in a coupled-channel formalism incorporating quasi-bound quark-model states, extending our previous studies of the P11 , P33 and S11 partial waves. The vertices of the baryon-meson interaction including the s - and d -wave pions and \( \rho\) -mesons, the s -wave \( \eta\) -meson, and the s - and p -wave \( \sigma\) -mesons are determined in the Cloudy Bag Model, with some changes of the parameters to reproduce the widths of the resonances. The helicity amplitudes and the electroproduction amplitudes exhibit consistent behavior in all channels but tend to be too weak compared to the experiment. We discuss possible origins of this discrepancy which arises also in the constituent quark model calculations.

Keywords

Partial Wave Quark Model Helicity Amplitude Quark Core Chiral Quark Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Golli, S. Sirca, Eur. Phys. J. A 38, 271 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    B. Golli, S. Sirca, M. Fiolhais, Eur. Phys. J. A 42, 185 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    B. Golli, S. Sirca, Eur. Phys. J. A 47, 61 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fiolhais, B. Golli, S. Sirca, Phys. Lett. B 373, 229 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Chin. Phys. C 33, 1069 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. ST 198, 141 (2011)CrossRefGoogle Scholar
  10. 10.
    CLAS Collaboration (I.G. Aznauryan et al.), Phys. Rev. C 80, 055203 (2009)CrossRefGoogle Scholar
  11. 11.
    V.I. Mokeev, Phys. Rev. C 86, 035203 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006)ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    A.V. Anisovich et al., Eur. Phys. J. A 48, 15 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055211 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Batinić, S. Ceci, A. Svarc, B. Zauner, Phys. Rev. C 82, 038203 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D.M. Manley, E.M. Saleski, Phys. Rev. D 45, 4002 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    M. Döring, Nucl. Phys. A 786, 164 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    M. Döring, E. Oset, D. Strottman, Phys. Lett. B 639, 59 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    D. Rönchen et al., Eur. Phys. J. A 49, 44 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    F. Huang et al., Phys. Rev. C 85, 054003 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, arXiv:1305.4351
  23. 23.
    B. Juliá-Diaz et al., Phys. Rev. C 77, 045205 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    B. Juliá-Diaz et al., Phys. Rev. C 80, 025207 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 439, 193 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    F.E. Close, F.J. Gilman, Phys. Lett. B 38, 541 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    M. Warns, H. Schröder, W. Pfeil, H. Rollnik, Z. Phys. C 46, 627 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    M. Aiello, M.M. Giannini, E. Santopinto, J. Phys. G 24, 753 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    D. Merten, U. Löring, K. Kretzschmar, B. Metsch, H.-R. Petry, Eur. Phys. J. A 14, 477 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ronniger, B.Ch. Metsch, Eur. Phys. J. A 49, 8 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    N. Isgur, G. Karl, Phys. Lett. B 72, 109 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    F. Myhrer, J. Wroldsen, Z. Phys. C 25, 281 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    T.A. deGrand, Ann. Phys. 101, 496 (1976)ADSCrossRefGoogle Scholar
  36. 36.
    A.J. Hey et al., Nucl. Phys. A 362, 317 (1981)CrossRefGoogle Scholar
  37. 37.
    E.J. Garzon, E. Oset, Eur. Phys. J. A 48, 5 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984)Google Scholar
  39. 39.
    L. Tiator, D. Drechsel, G. Knoechlein, C. Bennhold, Phys. Rev. C 60, 035210 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)CrossRefGoogle Scholar
  41. 41.
    CLAS Collaboration (M. Dugger et al.), Phys. Rev. C 79, 065206 (2009)CrossRefGoogle Scholar
  42. 42.
    K. Joo et al., Phys. Rev. Lett. 88, 122001 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    G. Laveissiere et al., Phys. Rev. C 69, 045202 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    K. Park et al., Phys. Rev. C 77, 015208 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    G. Ramalho, M.T. Peña, F. Gross, Eur. Phys. A 36, 329 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    G. Ramalho, K. Tsushima, Phys. Rev. D 82, 073007 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    R.F. Alvarez-Estrada, A.W. Thomas, J. Phys. G: Nucl. Phys. 9, 161 (1983)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of EducationUniversity of Ljubljana and J. Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of Ljubljana and J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations