Skip to main content
Log in

Analysis of ω self-energy at finite temperature and density in the real-time formalism

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using the real time formalism of field theory at finite temperature and density we have evaluated the in-medium ω self-energy from baryon and meson loops. We have analyzed in detail the discontinuities across the branch cuts of the self-energy function and obtained the imaginary part from the non-vanishing contributions in the cut regions. An extensive set of resonances have been considered in the baryon loops. Adding the meson loop contribution we obtain the full modified spectral function of the ω meson in a thermal gas of mesons, baryons and anti-baryons in equilibrium for several values of temperature and baryon chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alam, S. Sarkar, P. Roy, T. Hatsuda, B. Sinha, Ann. Phys. 286, 159 (2001).

    Article  ADS  Google Scholar 

  2. B. Friman, C. Hohne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, P. Senger, in The CBM physics book: Compressed baryonic matter in laboratory, in Lect. Notes Phys., Vol. 814 (Springer, 2011) p. 1.

  3. R.S. Hayano, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010).

    Article  ADS  Google Scholar 

  4. S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. E 19, 147 (2010).

    Article  ADS  Google Scholar 

  5. S. Sarkar, Nucl. Phys. A 862-863, 13 (2011).

    Article  ADS  Google Scholar 

  6. V. Bernard, U.-G. Meissner, Nucl. Phys. A 489, 647 (1988).

    Article  ADS  Google Scholar 

  7. H.C. Jean, J. Piekarewicz, A.G. Williams, Phys. Rev. C 49, 1981 (1994).

    Article  ADS  Google Scholar 

  8. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, Phys. Lett. B 443, 26 (1998).

    Article  ADS  Google Scholar 

  9. B. Friman, Acta Phys. Pol. B 29, 3195 (1998).

    ADS  Google Scholar 

  10. M. Post, U. Mosel, Nucl. Phys. A 688, 808 (2001).

    Article  ADS  Google Scholar 

  11. G.I. Lykasov, W. Cassing, A. Sibirtsev, M.V. Rzyanin, Eur. Phys. J. A 6, 71 (1999).

    Article  ADS  Google Scholar 

  12. A. Sibirtsev, C. Elster, J. Speth, arXiv:nucl-th/0203044.

  13. M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002) 765.

    Article  ADS  Google Scholar 

  14. F. Klingl, N. Kaiser, W. Weise, Nucl. Phys. A 624, 527 (1997).

    Article  ADS  Google Scholar 

  15. P. Muehlich, V. Shklyar, S. Leupold, U. Mosel, M. Post, Nucl. Phys. A 780, 187 (2006).

    Article  ADS  Google Scholar 

  16. S. Zschocke, O.P. Pavlenko, B. Kampfer, Phys. Lett. B 562, 57 (2003).

    Article  ADS  Google Scholar 

  17. A.K. Dutt-Mazumder, R. Hofmann, M. Pospelov, Phys. Rev. C 63, 015204 (2001).

    Article  ADS  Google Scholar 

  18. B. Steinmueller, S. Leupold, Nucl. Phys. A 778, 195 (2006).

    Article  ADS  Google Scholar 

  19. F. Klingl, T. Waas, W. Weise, Nucl. Phys. A 650, 299 (1999).

    Article  ADS  Google Scholar 

  20. J.C. Caillon, J. Labarsouque, J. Phys. G 21, 905 (1995).

    Article  ADS  Google Scholar 

  21. K. Saito, K. Tsushima, A.W. Thomas, A.G. Williams, Phys. Lett. B 433, 243 (1998).

    Article  ADS  Google Scholar 

  22. A.K. Dutt-Mazumder, Nucl. Phys. A 713, 119 (2003).

    Article  ADS  Google Scholar 

  23. K. Saito, K. Tsushima, D.H. Lu, A.W. Thomas, Phys. Rev. C 59, 1203 (1999).

    Article  ADS  Google Scholar 

  24. M. Kaskulov, E. Hernandez, E. Oset, Eur. Phys. J. A 31, 245 (2007).

    Article  ADS  Google Scholar 

  25. R.A. Schneider, W. Weise, Phys. Lett. B 515, 89 (2001).

    Article  ADS  Google Scholar 

  26. V.L. Eletsky, M. Belkacem, P.J. Ellis, J.I. Kapusta, Phys. Rev. C 64, 035202 (2001).

    Article  ADS  Google Scholar 

  27. A.T. Martell, P.J. Ellis, Phys. Rev. C 69, 065206 (2004).

    Article  ADS  Google Scholar 

  28. R. Rapp, Phys. Rev. C 63, 054907 (2001).

    Article  ADS  Google Scholar 

  29. P. Roy, S. Sarkar, J. Alam, B. Dutta-Roy, B. Sinha, Phys. Rev. C 59, 2778 (1999).

    Article  ADS  Google Scholar 

  30. J. -eAlam, S. Sarkar, P. Roy, B. Dutta-Roy, B. Sinha, Phys. Rev. C 59, 905 (1999).

    Article  ADS  Google Scholar 

  31. F. Riek, J. Knoll, Nucl. Phys. A 740, 287 (2004).

    Article  ADS  Google Scholar 

  32. E325 Collaboration (K. Ozawa et al.), Phys. Rev. Lett. 86, 5019 (2001).

    Article  ADS  Google Scholar 

  33. CBELSA/TAPS Collaboration (M. Kotulla et al.), Phys. Rev. Lett. 100, 192302 (2008).

    Article  ADS  Google Scholar 

  34. S. Ghosh, S. Sarkar, S. Mallik, Eur. Phys. J. C 70, 251 (2010).

    Article  ADS  Google Scholar 

  35. S. Ghosh, S. Sarkar, Nucl. Phys. A 870-871, 94 (2011).

    Article  ADS  Google Scholar 

  36. S. Ghosh, S. Sarkar, S. Mallik, Phys. Rev. C 83, 018201 (2011).

    Article  ADS  Google Scholar 

  37. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  38. P. Gonzalez, E. Oset, J. Vijande, Phys. Rev. C 79, 025209 (2009).

    Article  ADS  Google Scholar 

  39. S. Sarkar, E. Oset, M.J. Vicente Vacas, Nucl. Phys. A 750, 294 (2005).

    Article  ADS  Google Scholar 

  40. H.A. Weldon, Phys. Rev. D 28, 2007 (1983).

    Article  ADS  Google Scholar 

  41. C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991).

    Article  ADS  Google Scholar 

  42. P. Roy, A.K. Dutt-Mazumder, S. Sarkar, J. Alam, J. Phys. G 35, 065106 (2008).

    Article  ADS  Google Scholar 

  43. S. Sarkar, S. Ghosh, J. Phys. Conf. Ser. 374, 012010 (2012).

    Article  ADS  Google Scholar 

  44. S. Ghosh, S. Sarkar, J. Alam, Eur. Phys. J. C 71, 1760 (2011).

    Article  ADS  Google Scholar 

  45. R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996).

  47. S. Mallik, S. Sarkar, Eur. Phys. J. C 61, 489 (2009).

    Article  ADS  Google Scholar 

  48. R. Mills, Propagators for Many Particle Systems (Gordon and Breach, New York, 1969).

  49. A.J. Niemi, G.W. Semenoff, Ann. Phys. 152, 105 (1984).

    Article  ADS  Google Scholar 

  50. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  51. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. R.D. Peccei, Phys. Rev. 176, 1812 (1968).

    Article  ADS  Google Scholar 

  53. V. Shklyar, H. Lenske, U. Mosel, G. Penner, Phys. Rev. C 71, 055206 (2005).

    Article  ADS  Google Scholar 

  54. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989).

    Article  ADS  Google Scholar 

  55. S. Mallik, S. Sarkar, Eur. Phys. J. C 25, 445 (2002).

    Article  ADS  Google Scholar 

  56. A.D. Fetter, J.D. Walecka Quantum Theory of Many-Particle Systems (McGraw-Hill Book Company, New-York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Sarkar.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Sarkar, S. Analysis of ω self-energy at finite temperature and density in the real-time formalism. Eur. Phys. J. A 49, 97 (2013). https://doi.org/10.1140/epja/i2013-13097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13097-4

Keywords

Navigation