Skip to main content
Log in

Phase transitions and gluodynamics in 2-colour matter at high density

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential μ, with a pion mass of 700 MeV (m π /m ρ = 0.8). From temperature scans at fixed μ we find that the critical temperature for the superfluid to normal transition depends only very weakly on μ above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with μ. We find indications of a region of superfluid but deconfined matter at high μ and intermediate T. The static quark potential determined from the Wilson loop is found to exhibit a “string tension” that increases at large μ in the “deconfined” region. The electric (longitudinal) gluon propagator in Landau gauge becomes strongly screened with increasing temperature and chemical potential. The magnetic (transverse) gluon shows little sensitivity to temperature, and exhibits a mild enhancement at intermediate μ before becoming suppressed at large μ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Eur. Phys. J. C 71, 1756 (2011) arXiv:1101.3270.

    Article  ADS  Google Scholar 

  2. G. Aarts, PoS LATTICE2012, 017 (2012) arXiv:1302.3028.

    Google Scholar 

  3. S. Chandrasekharan, Phys. Rev. D 86, 021701 (2012) arXiv:1205.0084.

    Article  ADS  Google Scholar 

  4. AuroraScience Collaboration (M. Cristoforetti, F. Di Renzo, L. Scorzato), Phys. Rev. D 86, 074506 (2012) arXiv:1205.3996.

    Article  ADS  Google Scholar 

  5. S. Hands, S. Kim, J.-I. Skullerud, Eur. Phys. J. C 48, 193 (2006) hep-lat/0604004.

    Article  ADS  Google Scholar 

  6. S. Hands, S. Kim, J.-I. Skullerud, Phys. Rev. D 81, 091502R (2010) arXiv:1001.1682.

    Article  ADS  Google Scholar 

  7. S. Cotter, P. Giudice, S. Hands, J.-I. Skullerud, Phys. Rev. D 87, 034507 (2013) arXiv:1210.4496.

    Article  ADS  Google Scholar 

  8. A. Maas, L. von Smekal, B. Wellegehausen, A. Wipf, Phys. Rev. D 86, 111901 (2012) arXiv:1203.5653.

    Article  ADS  Google Scholar 

  9. J.B. Kogut, D.K. Sinclair, Phys. Rev. D 66, 034505 (2002) hep-lat/0202028.

    Article  ADS  Google Scholar 

  10. S. Hands et al., Eur. Phys. J. C 17, 285 (2000) hep-lat/0006018.

    Article  ADS  MATH  Google Scholar 

  11. S. Hands, I. Montvay, L. Scorzato, J. Skullerud, Eur. Phys. J. C 22, 451 (2001) hep-lat/0109029.

    Article  ADS  MATH  Google Scholar 

  12. P. Giudice, A. Papa, Phys. Rev. D 69, 094509 (2004) arXiv:hep-lat/0401024.

    Article  ADS  Google Scholar 

  13. P. Cea, L. Cosmai, M. D’Elia, A. Papa, JHEP 02, 066 (2007) arXiv:hep-lat/0612018.

    Article  ADS  Google Scholar 

  14. P. Cea, L. Cosmai, M. D’Elia, C. Manneschi, A. Papa, Phys. Rev. D 80, 034501 (2009) arXiv:0905.1292.

    Article  ADS  Google Scholar 

  15. J. Kogut, M. Stephanov, D. Toublan, Phys. Lett. B 464, 183 (1999) hep-ph/9906346.

    Article  ADS  Google Scholar 

  16. J. Kogut, M. Stephanov, D. Toublan, J. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582, 477 (2000) hep-ph/0001171.

    Article  ADS  Google Scholar 

  17. K. Splittorff, D. Son, M. Stephanov, Phys. Rev. D 64, 016003 (2001) hep-ph/0012274.

    Article  ADS  Google Scholar 

  18. J. Lenaghan, F. Sannino, K. Splittorff, Phys. Rev. D 65, 054002 (2002) hep-ph/0107099.

    Article  ADS  Google Scholar 

  19. K. Splittorff, D. Toublan, J. Verbaarschot, Nucl. Phys. B 620, 290 (2002) hep-ph/0108040.

    Article  ADS  MATH  Google Scholar 

  20. J.B. Kogut, D. Toublan, D. Sinclair, Phys. Lett. B 514, 77 (2001) hep-lat/0104010.

    Article  ADS  MATH  Google Scholar 

  21. J.B. Kogut, D. Toublan, D.K. Sinclair, Nucl. Phys. B 642, 181 (2002) hep-lat/0205019.

    Article  ADS  MATH  Google Scholar 

  22. K. Splittorff, D. Toublan, J. Verbaarschot, Nucl. Phys. B 639, 524 (2002) arXiv:hep-ph/0204076.

    Article  ADS  MATH  Google Scholar 

  23. G.V. Dunne, S.M. Nishigaki, Nucl. Phys. B 654, 445 (2003) arXiv:hep-ph/0210219.

    Article  ADS  MATH  Google Scholar 

  24. G.V. Dunne, S.M. Nishigaki, Nucl. Phys. B 670, 307 (2003) arXiv:hep-ph/0306220.

    Article  ADS  MATH  Google Scholar 

  25. T. Brauner, Mod. Phys. Lett. A 21, 559 (2006) arXiv:hep-ph/0601010.

    Article  ADS  MATH  Google Scholar 

  26. T. Kanazawa, T. Wettig, N. Yamamoto, JHEP 08, 003 (2009) arXiv:0906.3579.

    Article  ADS  Google Scholar 

  27. T. Kanazawa, T. Wettig, N. Yamamoto, Phys. Rev. D 81, 081701 (2010) arXiv:0912.4999.

    Article  ADS  Google Scholar 

  28. T. Kanazawa, T. Wettig, N. Yamamoto, JHEP 12, 007 (2011) arXiv:1110.5858.

    Article  ADS  Google Scholar 

  29. M. Giannini, L. Kondratyuk, M. Krivoruchenko, Phys. Lett. B 269, 139 (1991).

    Article  ADS  Google Scholar 

  30. L. Kondratyuk, M. Krivoruchenko, Z. Phys. A 344, 99 (1992).

    Article  ADS  Google Scholar 

  31. R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998) arXiv:hep-ph/9711396.

    Article  ADS  Google Scholar 

  32. C. Ratti, W. Weise, Phys. Rev. D 70, 054013 (2004) arXiv:hep-ph/0406159.

    Article  ADS  Google Scholar 

  33. G.-F. Sun, L. He, P. Zhuang, Phys. Rev. D 75, 096004 (2007) arXiv:hep-ph/0703159.

    Article  ADS  Google Scholar 

  34. T. Brauner, K. Fukushima, Y. Hidaka, Phys. Rev. D 80, 074035 (2009) arXiv:0907.4905.

    Article  ADS  Google Scholar 

  35. J.O. Andersen, T. Brauner, Phys. Rev. D 81, 096004 (2010) arXiv:1001.5168.

    Article  ADS  Google Scholar 

  36. M. Harada, C. Nonaka, T. Yamaoka, Phys. Rev. D 81, 096003 (2010) arXiv:1002.4705.

    Article  ADS  Google Scholar 

  37. T. Zhang, T. Brauner, D.H. Rischke, JHEP 06, 064 (2010) arXiv:1005.2928.

    Article  ADS  Google Scholar 

  38. L. He, Phys. Rev. D 82, 096003 (2010) arXiv:1007.1920.

    Article  ADS  Google Scholar 

  39. N. Strodthoff, B.-J. Schaefer, L. von Smekal, Phys. Rev. D 85, 074007 (2012) arXiv:1112.5401.

    Article  ADS  Google Scholar 

  40. J.C.R. Bloch, C.D. Roberts, S.M. Schmidt, Phys. Rev. C 60, 065208 (1999) arXiv:nucl-th/9907086.

    Article  ADS  Google Scholar 

  41. A. Nakamura, Phys. Lett. B 149, 391 (1984).

    Article  ADS  Google Scholar 

  42. S. Hands, J.B. Kogut, M.-P. Lombardo, S.E. Morrison, Nucl. Phys. B 558, 327 (1999) hep-lat/9902034.

    Article  ADS  Google Scholar 

  43. J.B. Kogut, D.K. Sinclair, S.J. Hands, S.E. Morrison, Phys. Rev. D 64, 094505 (2001) hep-lat/0105026.

    Article  ADS  Google Scholar 

  44. S. Muroya, A. Nakamura, C. Nonaka, Nucl. Phys. Proc. Suppl. 119, 544 (2003) hep-lat/0208006.

    Article  ADS  MATH  Google Scholar 

  45. S. Chandrasekharan, F.-J. Jiang, Phys. Rev. D 74, 014506 (2006) hep-lat/0602031.

    Article  ADS  Google Scholar 

  46. B. Allés, M. D’Elia, M. Lombardo, Nucl. Phys. B 752, 124 (2006) arXiv:hep-lat/0602022.

    Article  ADS  Google Scholar 

  47. M.-P. Lombardo, M.L. Paciello, S. Petrarca, B. Taglienti, Eur. Phys. J. C 58, 69 (2008) arXiv:0804.4863.

    Article  ADS  Google Scholar 

  48. S. Hands, P. Kenny, S. Kim, J.-I. Skullerud, Eur. Phys. J. A 47, 60 (2011) arXiv:1101.4961.

    Article  ADS  Google Scholar 

  49. T.D. Cohen, Phys. Rev. Lett. 91, 222001 (2003) arXiv:hep-ph/0307089.

    Article  ADS  Google Scholar 

  50. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007) arXiv:0706.2191.

    Article  ADS  Google Scholar 

  51. T. Kojo, Y. Hidaka, L. McLerran, R.D. Pisarski, Nucl. Phys. A 843, 37 (2010) arXiv:0912.3800.

    Article  ADS  Google Scholar 

  52. J. Braun, H. Gies, J.M. Pawlowski, Phys. Lett. B 684, 262 (2010) arXiv:0708.2413.

    Article  ADS  Google Scholar 

  53. F. Marhauser, J.M. Pawlowski, arXiv:0812.1144.

  54. J. Braun, A. Eichhorn, H. Gies, J.M. Pawlowski, Eur. Phys. J. C 70, 689 (2010) arXiv:1007.2619.

    Article  ADS  Google Scholar 

  55. L. Fister, J.M. Pawlowski, arXiv:1301.4163.

  56. J.-I. Skullerud, Nucl. Phys. A 820, 175c (2009) arXiv:0810.3795.

    Article  ADS  Google Scholar 

  57. J.-I. Skullerud, PoS QCD-TNT09, 043 (2009) arXiv:0912.0844.

    Google Scholar 

  58. S. Cotter et al., PoS LATTICE2012, 091 (2012) arXiv:1210.6757.

    Google Scholar 

  59. K.G. Wilson, Phys. Rev. D 10, 2445 (1974).

    Article  ADS  Google Scholar 

  60. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007) arXiv:hep-ph/0611300.

    Article  ADS  Google Scholar 

  61. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008) arXiv:0804.0993.

    Article  ADS  Google Scholar 

  62. A. Beraudo, J.-P. Blaizot, C. Ratti, Nucl. Phys. A 806, 312 (2008) arXiv:0712.4394.

    Article  ADS  Google Scholar 

  63. A. Beraudo, J. Blaizot, P. Faccioli, G. Garberoglio, Nucl. Phys. A 846, 104 (2010) arXiv:1005.1245.

    Article  ADS  Google Scholar 

  64. A. Bazavov, P. Petreczky, Nucl. Phys. A 904-905, 599c (2013) arXiv:1210.6314.

    Article  ADS  Google Scholar 

  65. T. Kawanai, S. Sasaki, Phys. Rev. D 85, 091503 (2012) arXiv:1110.0888.

    Article  ADS  Google Scholar 

  66. C. Allton, W. Evans, J.-I. Skullerud, PoS LATTICE2012, 082 (2012) arXiv:1306.3140 and arXiv:1303.5331.

    Google Scholar 

  67. S. Hands, S. Kim, J.-I. Skullerud, Phys. Lett. B 711, 199 (2012) arXiv:1202.4353.

    Article  ADS  Google Scholar 

  68. A. Bazavov, P. Petreczky, arXiv:1303.5500.

  69. SESAM Collaboration (G.S. Bali, H. Neff, T. Düssel, T. Lippert, K. Schilling), Phys. Rev. D 71, 114513 (2005) arXiv:hep-lat/0505012.

    Article  ADS  Google Scholar 

  70. UKQCD Collaboration (D.B. Leinweber, J.I. Skullerud, A.G. Williams, C. Parrinello), Phys. Rev. D 60, 094507 (1999) hep-lat/9811027.

    Article  ADS  Google Scholar 

  71. A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 75, 076003 (2007) arXiv:hep-lat/0702022.

    Article  ADS  Google Scholar 

  72. C.S. Fischer, A. Maas, J.A. Muller, Eur. Phys. J. C 68, 165 (2010) arXiv:1003.1960.

    Article  ADS  Google Scholar 

  73. V. Bornyakov, V. Mitrjushkin, Int. J. Mod. Phys. A 27, 1250050 (2012) arXiv:1103.0442.

    Article  ADS  Google Scholar 

  74. A. Maas, Phys. Rep. 524, 203 (2013) arXiv:1106.3942.

    Article  MathSciNet  ADS  Google Scholar 

  75. R. Aouane et al., Phys. Rev. D 85, 034501 (2012) arXiv:1108.1735.

    Article  ADS  Google Scholar 

  76. A. Maas, J.M. Pawlowski, L. von Smekal, D. Spielmann, Phys. Rev. D 85, 034037 (2012) arXiv:1110.6340.

    Article  ADS  Google Scholar 

  77. A. Cucchieri, T. Mendes, PoS FACESQCD, 007 (2010) arXiv:1105.0176.

    Google Scholar 

  78. R. Aouane, F. Burger, E.-M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys. Rev. D 87, 114502 (2013) arXiv:1212.1102.

    Article  ADS  Google Scholar 

  79. L. Fister, J.M. Pawlowski, arXiv:1112.5440.

  80. L. Fister, J.M. Pawlowski, arXiv:1112.5429.

  81. L. Fister, PhD thesis, Heidelberg University (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon-Ivar Skullerud.

Additional information

Communicated by S. Hands

Contribution to the Topical Issue “Lattice Field Theory Methods in Hadron and Nuclear Physics” edited by Simon Hands and Hartmut Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boz, T., Cotter, S., Fister, L. et al. Phase transitions and gluodynamics in 2-colour matter at high density. Eur. Phys. J. A 49, 87 (2013). https://doi.org/10.1140/epja/i2013-13087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13087-6

Keywords

Navigation