Skip to main content
Log in

Phase structure of hot dense QCD by a histogram method

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the phase structure of QCD at high temperature and density by lattice QCD simulations adopting a histogram method. The quark mass dependence and the chemical potential dependence of the nature of phase transition are investigated focusing on the probability distribution function (histogram). The shape of the distribution function changes with the quark mass and chemical potential. Through the shape of the distribution, the critical surface which separates the first-order transition and crossover regions in the heavy quark region is determined for the (2+1)-flavor case. Moreover, we determined the critical point at finite density for two-flavor QCD with an intermediate quark mass, using a Gaussian approximation of the complex phase distribution of the quark determinant. The chemical potential dependence of the critical quark mass is also evaluated in the situation where two light quarks and many massive quarks exist. We find that the first-order transition region becomes wider with the chemical potential in the many-flavor QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006).

    Article  ADS  Google Scholar 

  2. S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, W. Unger, Phys. Rev. D 80, 094505 (2009).

    Article  ADS  Google Scholar 

  3. Ch. Schmidt, C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, Nucl. Phys. B 119, 517 (2003).

    Article  Google Scholar 

  4. F. Karsch, C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, E. Laermann, Ch. Schmidt, Nucl. Phys. B 129, 614 (2004).

    Article  Google Scholar 

  5. S. Ejiri, C.R. Allton, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, Ch. Schmidt, Prog. Theor. Phys. Suppl. 153, 118 (2004).

    Article  ADS  Google Scholar 

  6. P. de Forcrand, O. Philipsen, Nucl. Phys. B 673, 170 (2003).

    Article  ADS  Google Scholar 

  7. P. de Forcrand, O. Philipsen, JHEP 01, 077 (2007).

    Article  Google Scholar 

  8. K. Kanaya, PoS (Lattice 2010), 012 (2010).

    Google Scholar 

  9. R.D. Pisarski, F. Wilczek, Phys. Rev. D 29, 338 (1984).

    Article  ADS  Google Scholar 

  10. M. Fukugita, M. Okawa, A. Ukawa, Nucl. Phys. B 337, 181 (1990).

    Article  ADS  Google Scholar 

  11. Y. Iwasaki, K. Kanaya, T. Yoshié, T. Hoshino, T. Shirakawa, Y. Oyanagi, S. Ichii, T. Kawai, Phys. Rev. D 46, 4657 (1992).

    Article  ADS  Google Scholar 

  12. Y. Iwasaki, K. Kanaya, S. Kaya, T. Yoshie, Phys. Rev. Lett. 78, 179 (1997).

    Article  ADS  Google Scholar 

  13. CP-PACS Collaboration (A. Ali Khan et al.), Phys. Rev. D 63, 034502 (2000).

    Article  Google Scholar 

  14. M. D’Elia, A. Di Giacomo, C. Pica, Phys. Rev. D 72, 114510 (2005).

    Article  ADS  Google Scholar 

  15. G. Cossu, C. Bonati, M. D’Elia, A. Di Giacomo, C. Pica, PoS (Lattice 2008), 204 (2008).

    Google Scholar 

  16. S. Aoki, H. Fukaya, Y. Taniguchi, Phys. Rev. D 86, 114512 (2012).

    Article  ADS  Google Scholar 

  17. WHOT-QCD Collaboration (H. Saito, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, T. Umeda), Phys. Rev. D 84, 054502 (2011).

    Article  ADS  Google Scholar 

  18. S. Ejiri, K. Kanaya, T. Umeda, Prog. Theor. Exp. Phys. 2012, 01A104 (2012).

    Article  Google Scholar 

  19. WHOT-QCD Collaboration (S. Ejiri, Y. Nakagawa, S. Aoki, K. Kanaya, H. Saito, T. Hatsuda, H. Ohno, T. Umeda), PoS (Lattice 2012), 089 (2012).

    Google Scholar 

  20. S. Ejiri, Phys. Rev. D 77, 014508 (2008).

    Article  ADS  Google Scholar 

  21. S. Ejiri, N. Yamada, Phys. Rev. Lett. 110, 172001 (2013).

    Article  ADS  Google Scholar 

  22. S. Ejiri, Phys. Rev. D 78, 074507 (2008).

    Article  ADS  Google Scholar 

  23. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    Article  ADS  Google Scholar 

  24. A. Gocksch, Phys. Rev. Lett. 61, 2054 (1988).

    Article  ADS  Google Scholar 

  25. K.N. Anagnostopoulos, J. Nishimura, Phys. Rev. D 66, 106008 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Ambjorn, K.N. Anagnostopoulos, J. Nishimura, J.J.M. Verbaarschot, JHEP 10, 062 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  27. Z. Fodor, S.D. Katz, C. Schmidt, JHEP 03, 121 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Ejiri, Phys. Rev. D 73, 054502 (2006).

    Article  ADS  Google Scholar 

  29. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Article  ADS  Google Scholar 

  30. WHOT-QCD Collaboration (S. Ejiri, Y. Maezawa, N. Ukita, S. Aoki, T. Hatsuda, N. Ishii, K. Kanaya, T. Umeda), Phys. Rev. D 82, 014508 (2010).

    Article  ADS  Google Scholar 

  31. K. Splittorff, J.J.M. Verbaarschot, Phys. Rev. D 77, 014514 (2008).

    Article  ADS  Google Scholar 

  32. M.P. Lombardo, K. Splittorff, J.J.M. Verbaarschot, Phys. Rev. D 80, 054509 (2009).

    Article  ADS  Google Scholar 

  33. C.R. Allton, M. Döring, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, K. Redlich, Phys. Rev. D 71, 054508 (2005).

    Article  ADS  Google Scholar 

  34. C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 68, 014507 (2003).

    Article  ADS  Google Scholar 

  35. S. Ejiri, H. Yoneyama, PoS (LAT2009), 173 (2009).

    Google Scholar 

  36. WHOT-QCD Collaboration, in preparation.

  37. P.E. Gibbs, Phys. Lett. B 172, 53 (1986).

    Article  ADS  Google Scholar 

  38. A. Hasenfratz, D. Toussaint, Nucl. Phys. B 371, 539 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  39. I.M. Barbour, S.E. Morrison, E.G. Klepfish, J.B. Kogut, M.P. Lombardo, Phys. Rev. D 56, 7063 (1997).

    Article  ADS  Google Scholar 

  40. I.M. Barbour, S.E. Morrison, E.G. Klepfish, J.B. Kogut, M.P. Lombardo, Nucl. Phys. B 60A, 220 (1998).

    Article  ADS  Google Scholar 

  41. S. Kratochvila, P. de Forcrand, PoS (LATTICE 2005), 167 (2005).

    Google Scholar 

  42. P. de Forcrand, S. Kratochvila, Nucl. Phys. B 153, 62 (2006).

    Article  Google Scholar 

  43. K. Nagata, A. Nakamura, Phys. Rev. D 82, 094027 (2010).

    Article  ADS  Google Scholar 

  44. A. Alexandru, Urs Wenger, Phys. Rev. D 83, 034502 (2011).

    Article  ADS  Google Scholar 

  45. A. Alexandru, M. Faber, I. Horvath, K.-F. Liu, Phys. Rev. D 72, 114513 (2005).

    Article  ADS  Google Scholar 

  46. A. Li, A. Alexandru, K.-F. Liu, X. Meng, Phys. Rev. D 82, 054502 (2010).

    Article  ADS  Google Scholar 

  47. A. Li, A. Alexandru, K.-F. Liu, Phys. Rev. D 84, 071503 (2011).

    Article  ADS  Google Scholar 

  48. A. Roberge, N. Weiss, Nucl. Phys. B 275, 734 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Ejiri.

Additional information

Communicated by S. Hands

Contribution to the Topical Issue “Lattice Field Theory Methods in Hadron and Nuclear Physics” edited by Simon Hands and Hartmut Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejiri, S. Phase structure of hot dense QCD by a histogram method. Eur. Phys. J. A 49, 86 (2013). https://doi.org/10.1140/epja/i2013-13086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13086-7

Keywords

Navigation