Fusion of 60Ni + 100Mo near and below the Coulomb barrier

Multi-phonon and transfer couplings down to the hindrance region
  • A. M. Stefanini
  • G. Montagnoli
  • F. Scarlassara
  • C. L. Jiang
  • H. Esbensen
  • E. Fioretto
  • L. Corradi
  • B. B. Back
  • C. M. Deibel
  • B. Di Giovine
  • J. P. Greene
  • H. D. Henderson
  • S. T. Marley
  • M. Notani
  • N. Patel
  • K. E. Rehm
  • D. Sewerinyak
  • X. D. Tang
  • C. Ugalde
  • S. Zhu
Regular Article - Experimental Physics

Abstract

The fusion excitation function of 60Ni + 100Mo has been measured from above the Coulomb barrier down to a cross section around 2 μb, looking for coupling and hindrance effects in this soft medium-mass system with positive Q-values for several neutron transfer channels. A comparison is made with previous results for 64Ni + 100Mo where no Q > 0 transfer channels exist and the hindrance effect is quite clear. The two excitation functions are very similar, as well as the corresponding logarithmic derivatives showing analogous saturations below the barrier. It appears that transfer couplings to Q > 0 channels seem to play a marginal role near and below the barrier for 60Ni + 100Mo , even if measurements of cross sections lower than 1 μb would be needed also for this system. Coupled-channels calculations confirm these observations and indicate that multi-phonon excitations dominate the fusion dynamics in the whole measured energy range.

References

  1. 1.
    G. Montagnoli, A.M. Stefanini, EPJ Web of Conferences 17, 05001 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Esbensen, Phys. Rev. C 72, 054607 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    N. Rowley, G.R. Satchler, P.H. Stelson, Phys. Lett. B 254, 25 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Stefanini et al., Phys. Rev. Lett. 74, 864 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    K.-H. Schmidt, W. Morawek, Rep. Prog. Phys. 54, 949 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J.G. Keller et al., Nucl. Phys. A 452, 173 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    C.L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Stefanini et al., Phys. Rev.C 76, 014610 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Stefanini et al., Phys. Rev.C 73, 034606 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    H. Timmers et al., Phys. Lett. B 399, 35 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    H. Timmers et al., Nucl. Phys. A 633, 421 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Kohley et al., Phys. Rev. Lett. 107, 202701 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    W.S. Freeman et al., Phys. Rev. Lett. 50, 1563 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    K.T. Lesko et al., Phys. Rev. C 34, 2155 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    F.L.H. Wolfs, Phys. Rev. C 36, 1379 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Kolata et al., Phys. Rev. C 85, 054603 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    C.L. Jiang et al., Phys. Rev. C 71, 044613 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    C.L. Jiang et al., Phys. Rev. C 81, 024611 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    F. Scarlassara et al., EPJ Web of Conferences 17, 05002 (2011).CrossRefGoogle Scholar
  22. 22.
    C.L. Jiang, H. Esbensen, B.B. Back, R.V.F. Janssens, K.E. Rehm, Phys. Rev. C 69, 014604 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    C.N. Davids, J.D. Larson, Nucl. Instrum. Methods Phys. Res. B 40/41, 1224 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame, P. Sugathan, A.V. Ramayya, W.B. Walters, Nucl. Instrum Methods Phys. Res. B 70, 358 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Jiang et al., Nucl. Instrum. Methods Phys. Res. A 554, 500 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    R.O. Sayer, Rev. Phys. Appl. 12, 1543 (1977).CrossRefGoogle Scholar
  27. 27.
    A. Gavron, Phys. Rev. C 21, 230 (1980).ADSCrossRefGoogle Scholar
  28. 28.
    C.L. Jiang, C.N. Davids, ANL Phys. Div. Annual Rep. ANL-95/14 (1995) p. 74 (unpublished).Google Scholar
  29. 29.
    K.E. Rehm, H. Esbensen, J. Gehring, B. Glagola, D. Henderson, W. Kutschera, M. Paul, F .Soramel, A.H. Wuosmaa, Phys. Lett B 317, 31 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    S. Mişicu, H. Esbensen, Phys. Rev. C 75, 034606 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    Ö. Akyüz, Å. Winther, Nuclear Structure and Heavy-Ion Physics, in Proceedings of the International School of Physics “Enrico Fermi”, Course LXXVII, Varenna, edited by R.A. Broglia, R.A. Ricci (North Holland, Amsterdam, 1981).Google Scholar
  32. 32.
    G. Montagnoli et al., Phys. Rev. C 85, 024607 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    N. Rowley, K. Hagino, Nucl. Phys. A 834, 110c (2010).ADSCrossRefGoogle Scholar
  34. 34.
    K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).ADSMATHCrossRefGoogle Scholar
  35. 35.
    H. Esbensen, S. Mişicu, Phys. Rev. C 76, 054609 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    A. Diaz-Torres, D.J. Hinde, M. Dasgupta, G.J. Milburn, J.A. Tostevin, Phys. Rev. 78, 064604 (2008).Google Scholar
  37. 37.
    T. Ichikawa, K. Hagino, A. Iwamoto, Phys. Rev. Lett. 103, 202701 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    A.M. Stefanini et al., Phys. Rev. C 78, 044607 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Stefanini et al., Phys. Lett. B 679, 95 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    S. Raman, C.W. Nestor, Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    T. Kibédi, R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, J.R. Leigh, Phys. Rev. Lett. 79, 2014 (1997).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. M. Stefanini
    • 1
  • G. Montagnoli
    • 2
  • F. Scarlassara
    • 2
  • C. L. Jiang
    • 3
  • H. Esbensen
    • 3
  • E. Fioretto
    • 1
  • L. Corradi
    • 1
  • B. B. Back
    • 3
  • C. M. Deibel
    • 3
    • 4
  • B. Di Giovine
    • 3
  • J. P. Greene
    • 3
  • H. D. Henderson
    • 3
  • S. T. Marley
    • 3
    • 5
  • M. Notani
    • 5
    • 6
  • N. Patel
    • 3
    • 7
  • K. E. Rehm
    • 3
  • D. Sewerinyak
    • 3
  • X. D. Tang
    • 5
  • C. Ugalde
    • 3
    • 8
  • S. Zhu
    • 3
  1. 1.Laboratori Nazionali di LegnaroINFNLegnaro (Padova)Italy
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di Padova, and INFN, Sezione di PadovaPadovaItaly
  3. 3.Physics DivisionArgonne National LaboratoryArgonneUSA
  4. 4.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  5. 5.University of Notre DameNotre DameUSA
  6. 6.Fermi National Accelerator LaboratoryBataviaUSA
  7. 7.Lawrence Livermore National LaboratoryLivemoreUSA
  8. 8.University of ChicagoChicagoUSA

Personalised recommendations