Skip to main content
Log in

On the near-barrier fusion of the proton-halo 8B + 58Ni system

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We have performed two independent calculations, without any free parameter, to predict the near-barrier fusion cross section for the proton-halo 8B + 58Ni system, for which data were recently reported. Standard coupled channel calculations predict fusion cross sections smaller than the data, while CDCC calculations for the absorption cross section (fusion + transfer + inelastic cross sections) agree with the data above the barrier, although transfer cross sections are calculated to have non-negligible cross section at this energy regime. At sub-barrier energies, region where transfer cross sections are particularly important, the CDCC calculations overpredict the data. The fusion data of the 8B + 58Ni system fail to follow the systematics of other weakly bound nuclei and the UFF curve and do not agree with the fusion data of the 8B + 28Si system. We try to explain this anomalous behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006).

    Article  ADS  Google Scholar 

  2. J.F. Liang, C. Signorini, Int. J. Mod. Phys. E 14, 1121 (2005).

    Article  ADS  Google Scholar 

  3. N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Prog. Part. Nucl. Sci. 59, 579 (2007).

    Article  ADS  Google Scholar 

  4. D.H. Luong et al., Phys. Lett. B 695, 105 (2011).

    Article  ADS  Google Scholar 

  5. R. Rafiei et al., Phys. Rev. C 81, 024601 (2010).

    Article  ADS  Google Scholar 

  6. P.R.S. Gomes et al., Phys. Lett. B 695, 320 (2011).

    Article  ADS  Google Scholar 

  7. L.F. Canto et al., J. Phys. G 36, 015109 (2009).

    Article  ADS  Google Scholar 

  8. L.F. Canto et al., Nucl. Phys A 821, 51 (2009).

    Article  ADS  Google Scholar 

  9. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973).

    Article  ADS  Google Scholar 

  10. P.R.S. Gomes, J. Lubian, L.F. Canto, Phys. Rev. C 79, 027606 (2009).

    Article  ADS  Google Scholar 

  11. K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998).

    Article  ADS  Google Scholar 

  12. P.R.S. Gomes et al., J. Phys. G 39, 115103 (2012).

    Article  ADS  Google Scholar 

  13. A. Pakou et al., Eur. Phys. J. A 39, 187 (2009).

    Article  ADS  Google Scholar 

  14. A. Pakou et al., Phys. Rev. Lett. 90, 202701 (2003).

    Article  ADS  Google Scholar 

  15. A. Pakou et al., Phys. Rev. C 76, 054601 (2007).

    Article  ADS  Google Scholar 

  16. R. Raabe et al., Nature 431, 823 (2004).

    Article  ADS  Google Scholar 

  17. A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004).

    Article  ADS  Google Scholar 

  18. Y.D. Fang et al., Phys. Rev. C 87, 024604 (2013).

    Article  ADS  Google Scholar 

  19. E.F. Aguilera et al., Phys. Rev. Lett. 107, 092701 (2011).

    Article  ADS  Google Scholar 

  20. L.C. Chamon et al., Phys. Rev. Lett. 79, 5218 (1997).

    Article  ADS  Google Scholar 

  21. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002).

    Article  ADS  Google Scholar 

  22. E.F. Aguilera, J.J. Kolata, Phys. Rev. C 85, 014603 (2012).

    Article  ADS  Google Scholar 

  23. T.L. Belyaeva, E.F. Aguilera, E. Martinez-Quiroz, A.M. Moro, J.J. Kolata, Phys. Rev. C 80, 064617 (2009).

    Article  ADS  Google Scholar 

  24. E.F. Aguilera et al., Phys. Rev. C 87, 014613 (2013).

    Article  ADS  Google Scholar 

  25. A. Gómez Camacho, E.F. Aguilera, J. Lubian, P.R.S. Gomes, J. Phys. G 40, 035103 (2013).

    Article  ADS  Google Scholar 

  26. E.F. Aguilera et al., Phys. Rev. C 79, 021601(R) (2009).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Pakou et al., Phys. Rev. C 87, 014619 (2013).

    Article  ADS  Google Scholar 

  28. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1998).

    Article  ADS  Google Scholar 

  29. E. Crema, L.C. Chamon, P.R.S Gomes, Phys. Rev C 72, 034610 (2005).

    Article  ADS  Google Scholar 

  30. E. Crema, P.R.S. Gomes, L.C. Chamon, Phys. Rev. C 75, 037601 (2007).

    Article  ADS  Google Scholar 

  31. E. Baldini Neto, B.V. Carlson, D. Hirata, Bras. J. Phys. 34, 855 (2004).

    Article  Google Scholar 

  32. E. Baldini Neto E, B.V. Carlson B V, D. Hirata, J. Phys. G 32, 655 (2006).

    Article  ADS  Google Scholar 

  33. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1970).

    Article  ADS  Google Scholar 

  34. T. Niksic, D. Vretenar, P. Finelli, P. Ring, Phys. Rev. C 66, 024306 (2002).

    Article  ADS  Google Scholar 

  35. S. Raman, C.W. Nestor, Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  36. V. Scuderi et al., Phys. Rev. C 84, 064604 (2011).

    Article  ADS  Google Scholar 

  37. A. Lemasson et al., Phys. Rev. Lett. 103, 232701 (2009).

    Article  ADS  Google Scholar 

  38. J.J. Kolata et al., Phys. Rev. Lett 81, 4580 (1998).

    Article  ADS  Google Scholar 

  39. C. Signorini et al., Nucl. Phys. A 735, 329 (2004).

    Article  ADS  Google Scholar 

  40. R. Wolski et al., Eur. Phys. J. A 47, 111 (2011).

    Article  ADS  Google Scholar 

  41. M. Dasgupta et al., Phys. Rev. Lett. 82, 1395 (1999).

    Article  ADS  Google Scholar 

  42. M. Dasgupta et al., Phys. Rev. C 70, 024606 (2004).

    Article  ADS  Google Scholar 

  43. G.V. Marti et al., Phys. Rev. C 71, 027602 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Devris, C.W. Dejager, C. Devries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  45. C.H. Dasso, A. Vitturi, Phys. Rev. C 50, 12 (R) (1994).

    Article  ADS  Google Scholar 

  46. D. Pereira et al., Nucl. Phys. A 826, 211 (2009).

    Article  ADS  Google Scholar 

  47. J. Lubian et al., Nucl. Phys. A 791, 24 (2007).

    Article  ADS  Google Scholar 

  48. S. Santra et al., Phys. Rev. C 83, 034616 (2011).

    Article  ADS  Google Scholar 

  49. T. Matsumoto et al., Phys. Rev. C 70, 061601(R) (2004).

    Article  ADS  Google Scholar 

  50. N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Phys. Rev. C 82, 034606 (2010).

    Article  ADS  Google Scholar 

  51. J. Lubian, F.M. Nunes, J. Phys. G: Nucl. Part. Phys. 34, 513 (2007).

    Article  ADS  Google Scholar 

  52. A. Gomez Camacho, E.F. Aguilera, E. Martinez Queiroz, P.R.S. Gomes, J. Lubian, L.F. Canto, Nucl. Phys. A 833, 156 (2010).

    Article  ADS  Google Scholar 

  53. J.A. Tostevin, F. Nunes, I. Thompson, Phys. Rev. C 63, 024617 (2001).

    Article  ADS  Google Scholar 

  54. L.F. Canto, J. Lubian, P.R.S. Gomes, M.S. Hussein, Phys. Rev. C 80, 047601 (2009).

    Article  ADS  Google Scholar 

  55. J. Lubian, T. Correa, P.R.S. Gomes, L.F. Canto L F, Phys. Rev. C 78, 064615 (2008).

    Article  ADS  Google Scholar 

  56. J. Lubian et al., Phys. Rev. C 79, 064605 (2009).

    Article  ADS  Google Scholar 

  57. A. Barioni et al., Phys. Rev. C 84, 014603 (2011).

    Article  ADS  Google Scholar 

  58. B. Paes, J. Lubian, P.R.S. Gomes, V. Guimarães, Nucl. Phys. A 890, 1 (2012).

    Article  ADS  Google Scholar 

  59. M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  60. N. Austern et al., Phys. Rep. 154, 125 (1987).

    Article  ADS  Google Scholar 

  61. Z. Moroz et al., Nucl. Phys. A 381, 294 (1982).

    Article  ADS  Google Scholar 

  62. F.D. Becchetti, G.W. Greenlees, Phys. Rev. 182, 1190 (1969).

    Article  ADS  Google Scholar 

  63. H. Esbensen, G.F. Bertch, Nucl. Phys. A 600, 37 (1996).

    Article  ADS  Google Scholar 

  64. A. Gravon, Phys. Rev. C 21, 230 (1980).

    Article  ADS  Google Scholar 

  65. F. Puhlhofer, Nucl. Phys. A 280, 267 (1979).

    Article  ADS  Google Scholar 

  66. L.R. Gasques, private communication.

  67. J. Tostevin, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. S. Gomes.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, J., Lubian, J., Gomes, P.R.S. et al. On the near-barrier fusion of the proton-halo 8B + 58Ni system. Eur. Phys. J. A 49, 57 (2013). https://doi.org/10.1140/epja/i2013-13057-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13057-0

Keywords

Navigation