Advertisement

Formation of the S = -1 resonance X(2265) in the reaction pp → X+K+ at 2.50 and 2.85 GeV

  • P. Kienle
  • M. Maggiora
  • K. SuzukiEmail author
  • T. Yamazaki
  • M. Alexeev
  • F. Balestra
  • Y. Bedfer
  • R. Bertini
  • L. C. Bland
  • A. Brenschede
  • F. Brochard
  • M. P. Bussa
  • M. Chiosso
  • Seonho Choi
  • M. L. Colantoni
  • R. Dressler
  • M. Dzemidzic
  • J. -Cl. Faivre
  • A. Ferrero
  • L. Ferrero
  • J. Foryciarz
  • I. Fröhlich
  • V. Frolov
  • R. Garfagnini
  • A. Grasso
  • S. Heinz
  • W. W. Jacobs
  • W. Kühn
  • A. Maggiora
  • D. Panzieri
  • H. -W. Pfaff
  • G. Pontecorvo
  • A. Popov
  • J. Ritman
  • P. Salabura
  • V. Tchalyshev
  • F. Tosello
  • S. E. Vigdor
  • G. Zosi
Open Access
Letter

Abstract

Analyzing DISTO data of pppΛK + at T p = 2.50 and 2.85GeV to populate a previously reported X(2265) -resonance with M x = 2267 MeV/c2 and Γ x = 118 MeV at 2.85GeV, we found that the yield of X(2265) at 2.50GeV is much less than that at 2.85GeV (less than 10%), though it is expected from a kinematical consideration to be produced as much as 33% of that at 2.85GeV. The small population of X(2265) at 2.50GeV is consistent with the very weak production of Γ(1405) at the same incident energy toward its production threshold, thus indicating that Γ(1405) plays an important role as a doorway state for the formation of X(2265).

Keywords

Incident Energy Excitation Function Dalitz Plot Acceptance Correction Intermediate Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    F. Balestra et al., Nucl. Instrum. Methods A 426, 385 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M. Maggiora et al., Nucl. Phys. A 691, 329c (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Maggiora et al., Nucl. Phys. A 835, 43 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    I. Zychor et al., Phys. Lett. B 660, 167 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Akaishi, private communication (2009)Google Scholar
  8. 8.
    S. Abd El-Samad et al., Phys. Lett. B 688, 142 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Sibirtsev, Phys. Lett. B 359, 29 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    G. Agakishiev, to be published in Phys. Rev. C, arXiv-1208.0205v1Google Scholar
  11. 11.
    T. Yamazaki, Y. Akaishi, Phys. Lett. B 535, 70 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yamazaki, Y. Akaishi, Phys. Rev. C 76, 045201 (2007)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • P. Kienle
    • 1
    • 2
  • M. Maggiora
    • 3
  • K. Suzuki
    • 2
    Email author
  • T. Yamazaki
    • 4
    • 5
  • M. Alexeev
    • 3
    • 14
  • F. Balestra
    • 3
  • Y. Bedfer
    • 6
  • R. Bertini
    • 3
    • 6
  • L. C. Bland
    • 7
  • A. Brenschede
    • 8
  • F. Brochard
    • 6
  • M. P. Bussa
    • 3
  • M. Chiosso
    • 3
  • Seonho Choi
    • 7
  • M. L. Colantoni
    • 3
  • R. Dressler
    • 13
  • M. Dzemidzic
    • 7
  • J. -Cl. Faivre
    • 6
  • A. Ferrero
    • 3
  • L. Ferrero
    • 3
  • J. Foryciarz
    • 10
    • 11
  • I. Fröhlich
    • 8
  • V. Frolov
    • 9
  • R. Garfagnini
    • 3
  • A. Grasso
    • 3
  • S. Heinz
    • 3
    • 6
  • W. W. Jacobs
    • 7
  • W. Kühn
    • 8
  • A. Maggiora
    • 3
  • D. Panzieri
    • 12
  • H. -W. Pfaff
    • 8
  • G. Pontecorvo
    • 3
    • 9
  • A. Popov
    • 9
  • J. Ritman
    • 8
  • P. Salabura
    • 10
  • V. Tchalyshev
    • 9
  • F. Tosello
    • 3
  • S. E. Vigdor
    • 7
  • G. Zosi
    • 3
  1. 1.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany
  2. 2.Stefan Meyer Institute for Subatomic PhysicsAustrian Academy of SciencesViennaAustria
  3. 3.Dipartimento di Fisica Generale “A. Avogadro” and INFNTorinoItaly
  4. 4.Department of PhysicsUniversity of TokyoTokyoJapan
  5. 5.RIKEN Nishina CenterSaitamaJapan
  6. 6.Laboratoire National SaturneCEA SaclayFrance
  7. 7.Indiana University Cyclotron FacilityBloomingtonUSA
  8. 8.II. Physikalisches InstitutUniversität GießenGießenGermany
  9. 9.JINRDubnaRussia
  10. 10.M. Smoluchowski Institute of PhysicsJagellonian UniversityKrakówPoland
  11. 11.H. Niewodniczanski Institute of Nuclear PhysicsKrakówPoland
  12. 12.Università del Piemonte Orientale and INFNTorinoItaly
  13. 13.Forschungszentrum RossendorfRossendorfGermany
  14. 14.INFNTriesteItaly

Personalised recommendations