Skip to main content
Log in

Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin-Helmholtz instability with heat and mass transfer

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Viscous corrections for the viscous potential flow analysis of Kelvin-Helmholtz instability at the interface of two viscous fluids in the presence of a tangential magnetic field has been carried out when there is heat and mass transfer across the interface. Both fluids are taken as incompressible, viscous and magnetic with different kinematic viscosities and different magnetic permeabilities. In the viscous potential flow theory, viscosity enters through the normal stress balance whereas the effect of shearing stresses is completely neglected. We include the viscous pressure in the normal stress balance along with the irrotational pressure and it is assumed that this viscous pressure will resolve the discontinuity of the tangential stresses at the interface for two fluids. A dispersion relation has been derived and stability is discussed theoretically as well as numerically. A stability criterion is given in terms of a critical value of relative velocity as well as a critical value of applied magnetic field. It has been observed that the tangential magnetic field and the vapor fraction both have stabilizing effect on the stability of the system while heat and mass transfer destabilize the interface. Also, it has been found that the effect of irrotational shearing stresses stabilizes the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 1981)

  2. P.G. Drazin, W.H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981)

  3. D.Y. Hsieh, Trans. ASME 94, 156 (1972)

    Article  Google Scholar 

  4. D.Y. Hsieh, Phys. Fluids 21, 745 (1978)

    Article  ADS  MATH  Google Scholar 

  5. A.R. Nayak, B.B. Chakraborty, Phys. Fluids 27, 1937 (1984)

    Article  ADS  MATH  Google Scholar 

  6. D.S. Lee, J. Phys. A: Math. Gen. 38, 2803 (2005)

    Article  ADS  MATH  Google Scholar 

  7. A.R.F. Elhefnawy, J. Plasma Phys. 51, 451 (1994)

    Article  ADS  Google Scholar 

  8. G.K. Gill, R.K. Chhabra, S.K. Trehan, Z. Naturforsch. 50a, 805 (1995)

    Google Scholar 

  9. G.M. Motamid, Y.O. El-Dib, Int. J. Theor. Phys. 35, 425 (1996)

    Article  Google Scholar 

  10. A.R.F. Elhefnawy, Z. Angew. Math. Mech. 77, 19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. G.M. Moatimid, J. Coll. Int. Sci. 250, 108 (2002)

    Article  Google Scholar 

  12. D.D. Joseph, T. Liao, J. Fluid Mech. 256, 1 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Funada, D.D. Joseph, J. Fluid Mech. 445, 263 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Asthana, G.S. Agrawal, Physica A 382, 389 (2007)

    Article  ADS  Google Scholar 

  15. M.K. Awasthi, G.S. Agrawal, Commun. Nonlinear Sci. Numer. Simul. 17, 2463 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M.A. Sirwah, Physica A 375, 381 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Sirwah, Non-linear Mech. 43, 416 (2008)

    Article  Google Scholar 

  18. J. Wang, D.D. Joseph, T. Funada, J. Fluid Mech. 522, 383 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Wang, D.D. Joseph, T. Funada, Phys. Fluids 17, 052105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. D.D. Joseph, T. Funada, J. Wang, Potential flows of viscous and viscoelastic fluids (Cambridge University Press, 2007)

  21. M.K. Awasthi, R. Asthana, G.S. Agrawal, Appl. Mech. Mater. 110-116, 4628 (2011)

    Article  ADS  Google Scholar 

  22. M.K. Awasthi, G.S. Agrawal, Int. J. Appl. Mech. 4, 1 (2012)

    Google Scholar 

  23. M.K. Awasthi, R. Asthana, G.S. Agrawal, Int. J. Heat Mass Transfer 55, 2345 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Awasthi.

Additional information

Communicated by T. Bíró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awasthi, M.K., Asthana, R. & Agrawal, G.S. Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin-Helmholtz instability with heat and mass transfer. Eur. Phys. J. A 48, 174 (2012). https://doi.org/10.1140/epja/i2012-12174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12174-6

Keywords

Navigation