Skip to main content
Log in

QGP flow fluctuations and the characteristics of higher moments

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb + Pb collisions at \( \sqrt{s_{NN}}=2.76\) TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source, changing skewness and kurtosis by time depending on beam energy as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998)

    Article  ADS  Google Scholar 

  2. M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999)

    Article  ADS  Google Scholar 

  3. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Article  ADS  Google Scholar 

  4. Y. Zhou, S.S. Shi, K. Xiao, K.J. Wu, F. Liu, Phys. Rev. C 82, 014905 (2010)

    Article  ADS  Google Scholar 

  5. C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007)

    Article  ADS  Google Scholar 

  6. C. Nonaka, M. Asakawa, S.A. Bass, J. Phys. G 35, 104099 (2008)

    Article  ADS  Google Scholar 

  7. C. Nonaka, M. Asakawa, S.A. Bass, B. Muller, Nucl. Phys. A 830, 291c (2009)

    Article  ADS  Google Scholar 

  8. H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H. Rischke, Phys. Rev. C 86, 014909 (2012) arXiv: 1203.2452v1 [nucl-th]

    Article  ADS  Google Scholar 

  9. L.P. Csernai, V.K. Magas, H. Stöcker, D.D. Strottman, Phys. Rev. C 84, 024914 (2011)

    Article  ADS  Google Scholar 

  10. P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  11. L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006)

    Article  ADS  Google Scholar 

  12. T. Schafer, D. Teaney, Rep. Prog. Phys. 72, 126001 (2009)

    Article  ADS  Google Scholar 

  13. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  14. L.P. Csernai, D.D. Strottman, Cs. Anderlik, Phys. Rev. C 85, 054901 (2012)

    Article  ADS  Google Scholar 

  15. V.K. Magas, L.P. Csernai, D.D. Strottman, Phys. Rev. C 64, 014901 (2001)

    Article  ADS  Google Scholar 

  16. V.K. Magas, L.P. Csernai, D.D. Strottman, Nucl. Phys. A 712, 167 (2002)

    Article  ADS  Google Scholar 

  17. STAR Collaboration (Tapan K. Nayak), Nucl. Phys. A 830, 555c (2009)

    Article  ADS  Google Scholar 

  18. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008)

    Article  ADS  Google Scholar 

  19. L.P. Csernai, Z. Neda, Phys. Lett. B 337, 25 (1994)

    Article  ADS  Google Scholar 

  20. L.P. Csernai, G. Mocanu, Z. Neda, Phys. Rev. C 85, 068201 (2012)

    Article  ADS  Google Scholar 

  21. L.P. Csernai, J.I. Kapusta, Phys. Rev. Lett. 69, 737 (1992)

    Article  ADS  Google Scholar 

  22. L.P. Csernai, J.I. Kapusta, Phys. Rev. D 46, 1379 (1992)

    Article  ADS  Google Scholar 

  23. P. Huovinen, P. Petreczky, J. Phys. G 38, 124103 (2011)

    Article  ADS  Google Scholar 

  24. Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Xiao-Mei Li, Sheng-Qin Feng, Bao-Guo Dong, Xu Cai, Comput. Phys. Commun. 183, 333 (2012)

    Article  ADS  Google Scholar 

  25. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  26. N.S. Amelin, E.F. Staubo, L.P. Csernai, V.D. Toneev, K.K. Gudima, Phys. Rev. C 44, 1541 (1991)

    Article  ADS  Google Scholar 

  27. Sz. Horvat, V.K. Magas, D.D. Strottman, L.P. Csernai, Phys. Lett. B 692, 277 (2010)

    Article  ADS  Google Scholar 

  28. Yun Cheng, L.P. Csernai, V.K. Magas, B.R. Schlei, D. Strottman, Phys. Rev. C 81, 064910 (2010)

    Article  ADS  Google Scholar 

  29. Dai-Mei Zhou, Ayut Limphirat, Yu-liang Yan, Yun Cheng, Yu-peng Yan, Xu Cai, Laszlo P. Csernai, Ben-Hao Sa, Phys. Rev. C 85, 064916 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Biró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D.J., Csernai, L.P., Strottman, D. et al. QGP flow fluctuations and the characteristics of higher moments. Eur. Phys. J. A 48, 168 (2012). https://doi.org/10.1140/epja/i2012-12168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12168-4

Keywords

Navigation