Skip to main content

Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies


The direct measurement of reaction cross-sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2O5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17O and up to 96% in 18O. Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.

This is a preview of subscription content, access via your institution.


  1. 1.

    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988).

  2. 2.

    C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, New York, 2007).

  3. 3.

    H. Costantini et al., Rep. Progr. Phys. 72, 086301 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    S. Palmerini, M. La Cognata et al., Astrophys. J. 729, 3 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    C. Iliadis, A. Champagne et al., Astrophys. J. Suppl. Ser. 142, 105 (2002).

    ADS  Article  Google Scholar 

  7. 7.

    S. Seuthe et al., Nucl. Instrum. Methods A 260, 33 (1987).

    ADS  Article  Google Scholar 

  8. 8.

    D.A. Scott, to be published in Phys. Rev. Lett. (2012).

  9. 9.

    D. Phillips, Nucl. Instrum. Methods 116, 195 (1974).

    ADS  Article  Google Scholar 

  10. 10.

    D.A. Vermilyea, Acta Metall. 1, 282 (1953).

    Article  Google Scholar 

  11. 11.

    N. Cabrera, N.F. Mott, Rep. Progr. Phys. 12, 163 (1949).

    ADS  Article  Google Scholar 

  12. 12.

    M.P. Seah et al., Nucl. Instrum. Methods B 30, 128 (1988).

    ADS  Article  Google Scholar 

  13. 13.

    M. Wiescher et al., Nucl. Phys. A 349, 165 (1980).

    ADS  Article  Google Scholar 

  14. 14.

    A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003).

    ADS  Article  Google Scholar 

  15. 15.

    J.F. Ziegler, Nucl. Instrum. Methods B 219, 1027 (2004) H. Andersen, J.F. Ziegler, The Stopping and Ranges of Ions in Matter.

    ADS  Article  Google Scholar 

  16. 16.

    W.A. Fowler et al., Rev. Mod. Phys. 20, 236 (1948).

    ADS  Article  Google Scholar 

  17. 17.

    M.A.N.W.K. Chu, J.W. Mayer, Backscattering Spectrometry (Academic Press, 1978).

  18. 18.

    M. Mayer, AIP Conf. Proc. 475, 541 (1999).

    ADS  Article  Google Scholar 

  19. 19.

    D. Phillips, J.P.S. Pringle, Nucl. Instrum. Methods 135, 389 (1976).

    ADS  Article  Google Scholar 

  20. 20.

    F.G.R.A. Benninghoven, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends (Wiley, New York, 1987).

  21. 21.

    J.P.S. Pringle, J. Electrochem. Soc. 119, 482 (1972).

    Article  Google Scholar 

Download references

Author information




Corresponding author

Correspondence to A. Caciolli.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and Permissions

About this article

Cite this article

LUNA Collaboration., Caciolli, A., Scott, D.A. et al. Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies. Eur. Phys. J. A 48, 144 (2012).

Download citation


  • Proton Beam
  • Target Thickness
  • Solid Target
  • Nuclear Astrophysics
  • Astrophysical Interest