Skip to main content
Log in

Recoil-ion trapping for precision mass measurements

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

For the first time masses of recoiling daughter ions have been measured that were held after beta-decay in a buffer-gas-filled Penning trap. From the masses of the trapped beta-decaying manganese ions 61-63Mn+ and the daughter recoil-ions 61-63Fe+ the Q values of 61-63Mn have been deduced with absolute uncertainties of about 5keV. The observed yields of iron ions are compared to the results from simulations, which confirm a recoil-ion trapping efficiency of about 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Aoi et al., Phys. Rev. Lett. 102, 012502 (2009)

    Article  ADS  Google Scholar 

  2. A. Gade et al., Phys. Rev. C 81, 051304 (2010)

    Article  ADS  Google Scholar 

  3. O. Sorlin et al., Eur. Phys. J. A 16, 55 (2003)

    Article  ADS  Google Scholar 

  4. P. Adrich et al., Phys. Rev. C 77, 054306 (2008)

    Article  ADS  Google Scholar 

  5. D. Pauwels et al., Phys. Rev. C 79, 044309 (2009)

    Article  ADS  Google Scholar 

  6. W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011)

    Article  ADS  Google Scholar 

  7. M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999)

    Article  ADS  Google Scholar 

  8. J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010)

    Article  ADS  Google Scholar 

  9. K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)

    Article  ADS  Google Scholar 

  10. C. Guénaut et al., Phys. Rev. C 75, 044303 (2007)

    Article  ADS  Google Scholar 

  11. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  12. L. Schweikhard, G. Bollen (Editors), Ultra-accurate mass spectometry and related topics, in Int. J. Mass Spectrom., Vol. 251, issues 2-3 (2006)

  13. G. Savard et al., Hyperfine Interact. 132, 223 (2001)

    Article  ADS  Google Scholar 

  14. J. Dilling et al., Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  15. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  16. J. Ketelaer et al., Nucl. Instrum. Methods A 594, 162 (2008)

    Article  ADS  Google Scholar 

  17. V.S. Kolhinen et al., Nucl. Instrum. Methods A 600, 391 (2009)

    Article  ADS  Google Scholar 

  18. R. Ringle et al., Nucl. Instrum. Methods A 604, 536 (2009)

    Article  ADS  Google Scholar 

  19. T. Eronen et al., Eur. Phys. J. A 48, 46 (2012)

    Article  ADS  Google Scholar 

  20. E. Kugler, Hyperfine Interact. 129, 23 (2000)

    Article  ADS  Google Scholar 

  21. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  22. A. Herlert et al., New J. Phys. 7, 44 (2005)

    Article  ADS  Google Scholar 

  23. V.I. Mishin et al., Nucl. Instrum. Methods B 73, 550 (1993)

    Article  ADS  Google Scholar 

  24. F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001)

    Article  ADS  Google Scholar 

  25. H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 378 (1997)

    Article  ADS  Google Scholar 

  26. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  27. ENSDF database (Evaluated Nuclear Structure Data File), http://www.nndc.bnl.gov/ensdf/

  28. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  29. A. Herlert et al., Int. J. Mass Spectrom. 251, 131 (2006)

    Article  ADS  Google Scholar 

  30. M. König et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995)

    Article  ADS  Google Scholar 

  31. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  32. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  33. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  34. I.F. Croall, H.H. Willis, J. Inorg. Nucl. Chem. 24, 221 (1962)

    Google Scholar 

  35. U. Köster et al., Nucl. Instrum. Methods B 204, 347 (2003)

    Article  ADS  Google Scholar 

  36. U. Köster, CERN-THESIS-2001-002, PhD thesis, TU München, Germany (1999)

  37. S. Naimi et al., Phys. Rev. C 86, 014325 (2012) DOI:10.1103/PhysRevC.86.014325

    Article  ADS  Google Scholar 

  38. C. Guénaut, private communication

  39. C. Guénaut, Eur. Phys. J. A 25, s01, 35 (2005) DOI:101140/epjad/i2005-06-030-4

  40. S.N. Liddick et al., Phys. Rev. C 73, 044322 (2006)

    Article  ADS  Google Scholar 

  41. L. Gaudefroy et al., Eur. Phys. J. A 23, 41 (2005)

    Article  ADS  Google Scholar 

  42. M. Oinonen et al., Hyperfine Interact. 127, 431 (2000)

    Article  ADS  Google Scholar 

  43. M. Block et al., Phys. Rev. Lett. 100, 132501 (2008)

    Article  ADS  Google Scholar 

  44. T. Eronen et al., Phys. Rev. Lett. 103, 252501 (2009)

    Article  ADS  Google Scholar 

  45. S. Eliseev et al., Phys. Rev. Lett. 106, 052504 (2011)

    Article  ADS  Google Scholar 

  46. D. Fink et al., Phys. Rev. Lett. 108, 062502 (2012)

    Article  ADS  Google Scholar 

  47. S. Van Gorp et al., Nucl. Instrum. Methods A 638, 192 (2011)

    Article  ADS  Google Scholar 

  48. N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006)

    Article  ADS  Google Scholar 

  49. O. Kofoed-Hansen, Dan. Mat. Fys. Medd. 28, 1 (1954)

    Google Scholar 

  50. A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 234, 161 (2004)

    Article  ADS  Google Scholar 

  51. E. Runte et al., Nucl. Phys. A 441, 237 (1985)

    Article  ADS  Google Scholar 

  52. N. Hoteling et al., Phys. Rev. C 82, 044305 (2010)

    Article  ADS  Google Scholar 

  53. H. Mach et al., Acta. Phys. Pol. 40, 477 (2009)

    ADS  Google Scholar 

  54. L.M. Faile, private communication

  55. A.T. Gallant et al., Phys. Rev. C 85, 044311 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Herlert.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herlert, A., Van Gorp, S., Beck, D. et al. Recoil-ion trapping for precision mass measurements. Eur. Phys. J. A 48, 97 (2012). https://doi.org/10.1140/epja/i2012-12097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12097-2

Keywords

Navigation