Skip to main content

Advertisement

Log in

Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading-order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value A(ρ 0) ≃ 26.5 MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin and density dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  2. J.R. Stone, P.G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007).

    Article  ADS  Google Scholar 

  3. E. Chabanat, E. Bonche, P. Haensel, J. Meyer, P. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  4. N. Chamel, S. Goriely, J.M. Pearson, Nucl. Phys. A 812, 72 (2008).

    Article  ADS  Google Scholar 

  5. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  ADS  Google Scholar 

  6. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).

    Article  ADS  Google Scholar 

  7. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010).

    Article  ADS  Google Scholar 

  8. S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003).

    Article  ADS  Google Scholar 

  9. J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972).

    Article  ADS  Google Scholar 

  10. B. Gebremariam, T. Duguet, S.K. Bogner, Phys. Rev. C 82, 014305 (2010).

    Article  ADS  Google Scholar 

  11. B. Gebremariam, S.K. Bogner, T. Duguet, Nucl. Phys. A 851, 17 (2011).

    Article  ADS  Google Scholar 

  12. M. Stoitsov et al., Phys. Rev. C 82, 054307 (2010).

    Article  ADS  Google Scholar 

  13. N. Kaiser, J.W. Holt, W. Weise, Eur. Phys. A 47, 128 (2011).

    Article  ADS  Google Scholar 

  14. L. Coraggio et al., Phys. Rev. C 75, 024311 (2007).

    Article  ADS  Google Scholar 

  15. S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Nucl. Phys. A 763, 59 (2005).

    Article  ADS  Google Scholar 

  16. A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002 (2004).

    Article  ADS  Google Scholar 

  17. E. Epelbaum, W. Glöckle, Ulf-G. Meißner, Nucl. Phys. A 747, 362 (2005).

    Article  ADS  Google Scholar 

  18. S.K. Bogner, R.J. Furnstahl, L. Platter, Eur. Phys. J. A 39, 219 (2009).

    Article  ADS  Google Scholar 

  19. N. Kaiser, Eur. Phys. A 45, 61 (2010).

    Article  ADS  Google Scholar 

  20. P.A. Seeger, W.M. Howard, Nucl. Phys. A 238, 491 (1975).

    Article  ADS  Google Scholar 

  21. J.P. Blaizot, Phys. Rep. 64, 171 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Vretenar, T. Niksic, P. Ring, Phys. Rev. C 68, 024310 (2003).

    Article  ADS  Google Scholar 

  23. K. Hebeler et al., Phys. Rev. C 83, 031301 (2011).

    Article  ADS  Google Scholar 

  24. P.G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kaiser.

Additional information

Communicated by M. Hjorth-Jensen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, N. Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces. Eur. Phys. J. A 48, 36 (2012). https://doi.org/10.1140/epja/i2012-12036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12036-3

Keywords

Navigation