Advertisement

Leading E1 and M1 contributions to radiative neutron capture on lithium-7

  • L. FernandoEmail author
  • R. Higa
  • G. Rupak
Open Access
Regular Article - Theoretical Physics

Abstract

Using halo effective field theory, we provide a model-independent calculation of the radiative neutron capture on lithium-7 over an energy range where the contribution from the 3+ resonance becomes important. We also present power counting arguments that establish a hierarchy for electromagnetic one- and two-body currents. One finds that a satisfactory description of the capture reaction, in the present single-particle approximation, requires a resonance width about three times larger than the experimentally quoted value.

Keywords

Resonance Width Loop Contribution Power Counting Lead Order Halo Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Bertulani, A. Gade, Phys. Rep. 485, 195 (2010) arXiv:0909.5693 [nucl-th].ADSCrossRefGoogle Scholar
  2. 2.
    T. Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011) arXiv:1010.4283 [nucl-th].ADSCrossRefGoogle Scholar
  3. 3.
    C. Bertulani, Z. Phys. A 356, 293 (1996).ADSGoogle Scholar
  4. 4.
    P. Navratil, C. Bertulani, E. Caurier, Phys. Lett. B 634, 191 (2006) arXiv:nucl-th/0511029.ADSCrossRefGoogle Scholar
  5. 5.
    P. Navratil, C. Bertulani, E. Caurier, Phys. Rev. C 73, 065801 (2006) arXiv:0601019 [nucl-th].ADSCrossRefGoogle Scholar
  6. 6.
    P. Navratil, R. Roth, S. Quaglioni, Phys. Rev. C 82, 034609 (2010) arXiv:1007.0525 [nucl-th].ADSCrossRefGoogle Scholar
  7. 7.
    K. Bennaceur, F. Nowacki, J. Okolowicz, M. Ploszajczak, Nucl. Phys. A 651, 289 (1999) arXiv:nucl-th/9901060.ADSCrossRefGoogle Scholar
  8. 8.
    N.B. Shul’gina, B.V. Danilin, V.D. Efros, J.M. Bang, J.S. Vaagen, M.V. Zhukov, Nucl. Phys. A 597, 197 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    L. Grigorenko, B. Danilin, V. Efros, N. Shul’gina, M. Zhukov, Phys. Rev. C 60, 044312 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    P. Descouvemont, D. Baye, Nucl. Phys. A 567, 341 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    P. Descouvemont, Phys. Rev. C 70, 065802 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    T. Tombrello, Nucl. Phys. 71, 459 (1965).CrossRefGoogle Scholar
  13. 13.
    B. Davids, S. Typel, Phys. Rev. C 68, 045802 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    J.T. Huang, C.A. Bertulani, V. Guimaraes, At. Data Nucl. Data Tables 96, 824 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    L.H. Kawano, W.A. Fowler, R.W. Kavanagh, R.A. Malaney, Astrophys. J. 372, 1 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    G. Rupak, R. Higa, Phys. Rev. Lett. 106, 222501 (2011) arXiv:1101.0207 [nucl-th].ADSCrossRefGoogle Scholar
  17. 17.
    C.A. Bertulani, H.W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Bedaque, H.W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003).ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    R. Higa, H.W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008) arXiv:0802.3426 [nucl-th].ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Gelman, Phys. Rev. C. 80, 034005 (2009) arXiv:0906.5502 [nucl-th].ADSCrossRefGoogle Scholar
  21. 21.
    D.L. Canham, H.W. Hammer, Eur. Phys. J. A 37, 367 (2008) arXiv:0807.3258 [nucl-th].ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Canham, H.W. Hammer, Nucl. Phys. A 836, 275 (2010) arXiv:0911.3238 [nucl-th].ADSCrossRefGoogle Scholar
  23. 23.
    V. Lensky, M.C. Birse, Eur. Phys. J. A 47, 142 (2011) arXiv:1109.2797 [nucl-th].ADSCrossRefGoogle Scholar
  24. 24.
    S. Typel, G. Baur, Nucl. Phys. A 759, 247 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    D.R. Phillips, H.W. Hammer, EPJ Web Conf. 3, 06002 (2010).CrossRefGoogle Scholar
  26. 26.
    H.-W. Hammer, D. Phillips, Nucl. Phys. A 865, 17 (2011) arXiv:1103.1087 [nucl-th].ADSCrossRefGoogle Scholar
  27. 27.
    L. Trache et al., Phys. Rev. C 67, 062801 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    J.E. Lynn, E.T. Jurney, S. Raman, Phys. Rev. C 44, 764 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    L. Koester, K. Knopf, W. Waschkowski, Z. Phys. A 312, 81 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    C. Angulo et al., Nucl. Phys. A 716, 211 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    N.J. Stone, At. Data Nucl. Data Tables 96, 75 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    J.W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    M.C. Birse, J.A. McGovern, K.G. Richardson, Phys. Lett. B 464, 169 (1999) arXiv:hep-ph/9807302.MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    J. Gegelia, Phys. Lett. B 429, 227 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    U. val Kolck, arXiv:hep-ph/9711222 (1997).
  37. 37.
    U. van Kolck, Nucl. Phys. A 645, 273 (1999) arXiv:nucl-th/9808007.ADSCrossRefGoogle Scholar
  38. 38.
    V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024.ADSCrossRefGoogle Scholar
  39. 39.
    D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    F.C. Barker, Nucl. Phys. A 588, 693 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    J.C. Blackmon et al., Phys. Rev. C 54, 383 (1996).ADSCrossRefGoogle Scholar
  42. 42.
    J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley Longman, New York, 1994).Google Scholar
  43. 43.
    B. Long, U. van Kolck, Nucl. Phys. A 840, 39 (2010) arXiv:0907.4569 [hep-ph].ADSCrossRefGoogle Scholar
  44. 44.
    H.W. Hammer, D. Lee, Phys. Lett. B 681, 500 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    H.W. Hammer, D. Lee, Ann. Phys. (N.Y.) 325, 2212 (2010).MathSciNetADSCrossRefzbMATHGoogle Scholar
  46. 46.
    S. Typel, private communication.Google Scholar
  47. 47.
    W.L. Imhof, R.G. Johnson, F.J. Vaughn, M. Walt, Phys. Rev. 114, 1037 (1959) (the two data sets correspond to two different normalizations of the same data).ADSCrossRefGoogle Scholar
  48. 48.
    Y. Nagai et al., Phys. Rev. C 71, 055803 (2005).MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    T.D. Cohen, B.A. Gelman, U. van Kolck, Phys. Lett. B 588, 57 (2004) arXiv:nucl-th/0402054.ADSCrossRefGoogle Scholar
  50. 50.
    R. Higa, G. Rupak, in preparation.Google Scholar
  51. 51.
    C.A. Bertulani, Comput. Phys. Commun. 156, 123 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    G. Rupak, N. Shoresh, Phys. Rev. C 60, 054004 (1999) arXiv:nucl-th/9902077.ADSCrossRefGoogle Scholar
  53. 53.
    D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000) arXiv:nucl-th/9908054.ADSCrossRefGoogle Scholar
  54. 54.
    S. Choi, J. Lee, J.S. Shim, H. Song, J. Korean Phys. Soc. 25, 576 (1992).Google Scholar
  55. 55.
    S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics & Astronomy and HPC2 Center for Computational SciencesMississippi State UniversityMississippi StateUSA
  2. 2.Kernfysisch Versneller Instituut, Theory GroupUniversity of GroningenGroningenThe Netherlands
  3. 3.Instituto de FísicaUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations