Advertisement

Prompt γ rays in 77Ge and 75Ge after thermal neutron capture

  • G. Meierhofer
  • P. GrabmayrEmail author
  • L. Canella
  • P. Kudejova
  • J. Jolie
  • N. Warr
Regular Article - Experimental Physics

Abstract

The reactions 74Ge(n, γ) and 76Ge(n, γ) have been measured with cold neutrons generated by the research reactor FRM II near Munich, Germany. The γ rays have been detected by two Compton-suppressed HPGe systems in single and coincidence mode. The number of identified prompt transitions and levels in 77Ge was increased significantly and the decay scheme could be reconstructed for the first time. The decay scheme was also reconstructed for 68 prompt transitions in 75Ge. Previously reported inconsistencies of the γ-ray intensities in the 77Ge β decay could be resolved. In particular, the region around 2039 keV was investigated carefully, since the background to the neutrinoless double-beta decay of 76Ge must be understood well for the upcoming Gerda and Majorana experiments.

Keywords

Neutron Capture Isomeric State Decay Scheme Coincidence Measurement Prompt Gamma Activation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gerda, The germanium detector array for the search of neutrinoless double beta decays of 76Ge at Gran Sasso, Proposal to the LNGS, http://www.mpi-hd.mpg.de/gerda (2004).
  2. 2.
    Majorana Collaboration, White paper on the Majorana zero neutrino double-beta decay experiment, nucl-ex/0311013 (2003).Google Scholar
  3. 3.
    A. Hasselgren, Nucl. Phys. A 198, 353 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    L.V. Groshev, L.I. Govor, A.M. Demidov, Bull. Acad. Sci. USSR 36, 753 (1973).Google Scholar
  5. 5.
    A. Farhan, B. Singh, Nucl. Data Sheets 81, 417 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    B.P. Kay et al., Phys. Rev. C 80, 017301 (2009).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A.E. Zobov, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk 54 (1991).Google Scholar
  8. 8.
    A. Farhan, B. Singh, Nucl. Data Sheets 86, 785 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Islam, T.J. Kennett, W.V. Prestwich, Phys. Rev. C 43, 1086 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    G. Meierhofer et al., Eur. Phys. J. A 40, 61 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    G. Meierhofer et al., Phys. Rev. C 81, 027603 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    P. Vermaercke et al., Nucl. Instrum. Methods A 622, 433 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Marganiec et al., Phys. Rev. C 79, 065802 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    P. Kudejova et al., J. Radioanal. Nucl. Chem. 278, 691 (2008).CrossRefGoogle Scholar
  15. 15.
    L. Canella, P. Kudejova, R. Schulze, A. Türler, J. Jolie, Nucl. Instum. Methods A 636, 108 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    J. Theuerkauf Program TV, Institute for Nuclear Physics, Cologne, Germany.Google Scholar
  17. 17.
    Database of prompt gamma rays from slow neutron capture for elemental analysis, Vienna: International Atomic Energy Agency (2006).Google Scholar
  18. 18.
    G. Audi, A.H. Wapstra, C.Th. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    E.M. Lent, PhD thesis, University of California, Davis (1974).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Meierhofer
    • 1
  • P. Grabmayr
    • 1
    Email author
  • L. Canella
    • 2
  • P. Kudejova
    • 2
    • 3
  • J. Jolie
    • 3
  • N. Warr
    • 3
  1. 1.Kepler Center for Astro and Particle PhysicsEberhard Karls Universität TübingenTübingenGermany
  2. 2.Forschungs-Neutronenquelle Heinz Maier-Leibnitz FRM IITechnische Universität MünchenGarchingGermany
  3. 3.Institut für KernphysikUniversität zu KölnCologneGermany

Personalised recommendations