Advertisement

The first PDF moments for three dynamical flavors in BChPT

  • P. C. Bruns
  • L. GreilEmail author
  • A. Schäfer
Open Access
Regular Article - Theoretical Physics

Abstract

We present a calculation of generalized baryon form factors in the framework of three-flavor covariant baryon chiral perturbation theory at leading one-loop order, necessary for the calculation of the first moments of generalized parton distribution functions. The formulae we derive can be used to guide the chiral extrapolation of three-flavor lattice calculations of the corresponding QCD matrix elements.

Keywords

Form Factor Baryon Masse Baryon Octet Matching Relation Mellin Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997) hep-ph/9603249.ADSCrossRefGoogle Scholar
  2. 2.
    M. Diehl, Phys. Rep. 388, 41 (2003) habilitation thesis, hep-ph/0307382.ADSCrossRefGoogle Scholar
  3. 3.
    P. Hägler, Phys. Rep. 490, 49 (2010) arXiv:0912.5483.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J. Gasser, M. Sainio, A. Svarc, Nucl. Phys. B 307, 779 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008) 0706.0312.ADSCrossRefGoogle Scholar
  6. 6.
    M. Dorati, T.A. Gail, T.R. Hemmert, Nucl. Phys. A 798, 96 (2008) nucl-th/0703073.ADSCrossRefGoogle Scholar
  7. 7.
    A. Krause, Helv. Phys. Acta 63, 3 (1990).Google Scholar
  8. 8.
    S. Scherer, Adv. Nucl. Phys. 27, 277 (2003).CrossRefGoogle Scholar
  9. 9.
    B. Borasoy, U.-G. Meißner, Ann. Phys. 254, 192 (1997) hep-ph/9607432.ADSCrossRefGoogle Scholar
  10. 10.
    M. Frink, U.-G. Meißner, JHEP 07, 028 (2004) hep-lat/0404018.ADSCrossRefGoogle Scholar
  11. 11.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 259, 353 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    V. Bernard, T.R. Hemmert, U.-G. Meißner, Phys. Lett. B 565, 137 (2003) hep-ph/0303198.ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    P.C. Bruns, L. Greil, A. Schäfer, arXiv:1105.6000 (2011).
  15. 15.
    J.-W. Chen, M.J. Savage, Phys. Rev. D 65, 094001 (2002) hep-lat/0111050.ADSCrossRefGoogle Scholar
  16. 16.
    W. Detmold, C. Lin, Phys. Rev. D 71, 054510 (2005) hep-lat/0501007.ADSCrossRefGoogle Scholar
  17. 17.
    T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999) hep-ph/9901384.ADSGoogle Scholar
  18. 18.
    M. Mai, P.C. Bruns, B. Kubis, U.-G. Meißner, Phys. Rev. D 80, 094006 (2009) 0905.2810.ADSCrossRefGoogle Scholar
  19. 19.
    W. Bietenholz, V. Bornyakov, N. Cundy, M. Göckeler, R. Horsley et al., Phys. Lett. B 690, 436 (2010) 1003.1114.ADSCrossRefGoogle Scholar
  20. 20.
    W. Bietenholz, V. Bornyakov, M. Göckeler, T.R. Hemmert, R. Horsley et al., PoS LATTICE2010, 122 (2010) 1012.4371.Google Scholar
  21. 21.
    W. Bietenholz, V. Bornyakov, M. Göckeler, R. Horsley, W. Lockhart et al., Phys. Rev. D 84, 054509 (2011) 1102.5300.ADSCrossRefGoogle Scholar
  22. 22.
    J.-W. Chen, X.-D. Ji, Phys. Lett. B 523, 73 (2001) hep-ph/0105296.ADSCrossRefGoogle Scholar
  23. 23.
    D. Arndt, M.J. Savage, Nucl. Phys. A 697, 429 (2002) nucl-th/0105045.ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Dorati, P. Hägler, T.R. Hemmert, unpublished (2011).Google Scholar
  25. 25.
    P.C. Bruns, L. Greil, A. Schäfer, in preparation (2012).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations