Skip to main content
Log in

Implications of unitarity and analyticity for the Dπ form factors

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We consider the vector and scalar form factors of the charm-changing current responsible for the semileptonic decay Dπlν. Using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(α 2 s ) terms in perturbative QCD, we constrain the shape parameters of the form factors and find exclusion regions for zeros on the real axis and in the complex plane. For the scalar form factor, a low-energy theorem and phase information on the unitarity cut are also implemented to further constrain the shape parameters. We finally propose new analytic expressions for the form factors, derive constraints on the relevant coefficients from unitarity and analyticity, and briefly discuss the usefulness of the new parametrizations for describing semileptonic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CLEO Collaboration (J.Y. Ge et al.), Phys. Rev. D 79, 052010 (2009) arXiv:0810.3878 [hep-ex].

    Article  ADS  Google Scholar 

  2. CLEO Collaboration (D. Besson et al.), Phys. Rev. D 80, 032005 (2009) arXiv:0906.2983 [hep-ex].

    Article  ADS  Google Scholar 

  3. D. Becirevic, A.B. Kaidalov, Phys. Lett. B 478, 417 (2000) arXiv:hep-ph/9904490.

    Article  ADS  Google Scholar 

  4. S. Fajfer, J.F. Kamenik, Phys. Rev. D 71, 014020 (2005) hep-ph/0412140.

    Article  ADS  Google Scholar 

  5. A. Khodjamirian, C. Klein, T. Mannel, N. Offen, Phys. Rev. D 80, 114005 (2009) arXiv:0907.2842 [hep-ph].

    Article  ADS  Google Scholar 

  6. QCDSF Collaboration (A. Al-Haydari et al.), Eur. Phys. J. A 43, 107 (2010) arXiv:0903.1664 [hep-lat].

    Article  ADS  Google Scholar 

  7. Fermilab Lattice and MILC Collaborations (J.A. Bailey et al.), PoS LAT2010, 306 (2010) arXiv:1011.2423 [hep-lat].

    Google Scholar 

  8. H. Na, C.T.H. Davies, E. Follana, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 82, 114506 (2010) arXiv:1008.4562 [hep-lat].

    Article  ADS  Google Scholar 

  9. S. Di Vita, B. Haas, V. Lubicz, F. Mescia, S. Simula, C. Tarantino for the ETM Collaboration, PoS LAT2010, 301 (2010) arXiv:1104.0869 [hep-lat].

    Google Scholar 

  10. J. Bijnens, I. Jemos, Nucl. Phys. B 840, 54 (2010) (E)844.

    Article  ADS  MATH  Google Scholar 

  11. S. Okubo, Phys. Rev. D 3, 2807 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Singh, A.K. Raina, Fortsch. Phys. 27, 561 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Caprini, Eur. Phys. J. C 13, 471 (2000) arXiv:hep-ph/9907227.

    Article  ADS  Google Scholar 

  14. B. Ananthanarayan, S. Ramanan, Eur. Phys. J. C 54, 461 (2008) arXiv:0801.2023 [hep-ph].

    Article  ADS  Google Scholar 

  15. B. Ananthanarayan, S. Ramanan, Eur. Phys. J. C 60, 73 (2009) arXiv:0811.0482 [hep-ph].

    Article  ADS  Google Scholar 

  16. G. Abbas, B. Ananthanarayan, S. Ramanan, Eur. Phys. J. A 41, 93 (2009) arXiv:0903.4297 [hep-ph].

    Article  ADS  Google Scholar 

  17. B. Ananthanarayan, I. Caprini, I. Sentitemsu Imsong, Phys. Rev. D 83, 096002 (2011) arXiv:1102.3299 [hep-ph].

    Article  ADS  Google Scholar 

  18. M. Micu, Phys. Rev. D 7, 2136 (1973).

    Article  ADS  Google Scholar 

  19. G. Auberson, G. Mahoux, F.R.A. Simao, Nucl. Phys. B 98, 204 (1975).

    Article  ADS  Google Scholar 

  20. C. Bourrely, B. Machet, E. de Rafael, Nucl. Phys. B 189, 157 (1981).

    Article  ADS  Google Scholar 

  21. C. Bourrely, I. Caprini, Nucl. Phys. B 722, 149 (2005) arXiv:hep-ph/0504016.

    Article  ADS  Google Scholar 

  22. R.J. Hill, Phys. Rev. D 74, 096006 (2006) arXiv:hep-ph/0607108.

    Article  ADS  Google Scholar 

  23. G. Abbas, B. Ananthanarayan, Eur. Phys. J. A 41, 7 (2009) arXiv:0905.0951 [hep-ph].

    Article  ADS  Google Scholar 

  24. G. Abbas, B. Ananthanarayan, I. Caprini, I. Sentitemsu Imsong, S. Ramanan, Eur. Phys. J. A 44, 175 (2010) arXiv:0912.2831 [hep-ph].

    Article  ADS  Google Scholar 

  25. G. Abbas, B. Ananthanarayan, I. Caprini, I. Sentitemsu Imsong, S. Ramanan, Eur. Phys. J. A 45, 389 (2010) arXiv:1004.4257 [hep-ph].

    Article  ADS  Google Scholar 

  26. G. Abbas, B. Ananthanarayan, I. Caprini, I. Sentitemsu Imsong, Phys. Rev. D 82, 094018 (2010) arXiv:1008.0925 [hep-ph].

    Article  ADS  Google Scholar 

  27. E. de Rafael, J. Taron, Phys. Lett. B 282, 215 (1992).

    Article  ADS  Google Scholar 

  28. E. de Rafael, J. Taron, Phys. Rev. D 50, 373 (1994) arXiv:hep-ph/9306214.

    Article  ADS  Google Scholar 

  29. C.G. Boyd, B. Grinstein, R.F. Lebed, Nucl. Phys. B 461, 493 (1996) arXiv:hep-ph/9508211.

    Article  ADS  Google Scholar 

  30. C.G. Boyd, B. Grinstein, R.F. Lebed, Nuovo Cimento A 109, 863 (1996) arXiv:hep-ph/9508242.

    Article  ADS  Google Scholar 

  31. C.G. Boyd, B. Grinstein, R.F. Lebed, Phys. Rev. D 56, 6895 (1997) arXiv:hep-ph/9705252.

    Article  ADS  Google Scholar 

  32. I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998) arXiv:hep-ph/9712417.

    Article  ADS  Google Scholar 

  33. C.G. Boyd, B. Grinstein, R.F. Lebed, Phys. Rev. Lett. 74, 4603 (1995) arXiv:hep-ph/9412324.

    Article  ADS  Google Scholar 

  34. L. Lellouch, Nucl. Phys. B 479, 353 (1996) arXiv:hep-ph/9509358.

    Article  ADS  Google Scholar 

  35. C. Bourrely, I. Caprini, L. Lellouch, Phys. Rev. D 79, 013008 (2009) (E) 82.

    Article  ADS  Google Scholar 

  36. K.G. Chetyrkin, M. Steinhauser, Eur. Phys. J. C 21, 319 (2001) arXiv:hep-ph/0108017.

    Article  ADS  Google Scholar 

  37. S.C. Generalis, J. Phys. G 16, L117 (1990).

    Article  ADS  Google Scholar 

  38. C.G. Callan, S.B. Treiman, Phys. Rev. Lett. 16, 153 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  39. C.A. Dominguez, J.G. Korner, K. Schilcher, Phys. Lett. B 248, 399 (1990).

    Article  ADS  Google Scholar 

  40. P. Duren, Theory of H p Spaces (Academic Press, New York, 1970).

  41. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  42. S. Narison, Nucl. Phys. Proc. Suppl. 207-208, 315 (2010) arXiv:1010.1959 [hep-ph].

    Article  ADS  Google Scholar 

  43. S. Narison, arXiv:1105.2922 [hep-ph].

  44. D.V. Bugg, J. Phys. G 36, 075003 (2009) arXiv:0901.2217 [hep-ph].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ananthanarayan.

Additional information

Communicated by J. Bijnens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananthanarayan, B., Caprini, I. & Sentitemsu Imsong, I. Implications of unitarity and analyticity for the Dπ form factors. Eur. Phys. J. A 47, 147 (2011). https://doi.org/10.1140/epja/i2011-11147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11147-7

Keywords

Navigation