Skip to main content

Pulse shape analysis for γ-ray tracking (Part I): Pulse shape simulation with JASS

Abstract

Next-generation \( \gamma\) -ray spectrometers based on highly segmented HPGe detectors are using the recent technique of \( \gamma\) -ray tracking to significantly improve on efficiency and Doppler correction capabilities. A precise reconstruction of the individual interaction locations within the active material is possible through the use of pulse shape analysis (PSA) which, in turn, demands an accurate knowledge of the detector response. We developed JASS, a Java-based simulation software package to generate pulse shapes for the AGATA detectors from physics constraints and basic material parameters. For verifying the simulation experimental data from a coincidence scan with known interaction locations was used. The achieved position resolution, in the order of a few millimeters, is within the requirements of the \( \gamma\) -ray tracking array.

This is a preview of subscription content, access via your institution.

References

  1. The official AGATA homepage, http://www-w2k.gsi.de/agata

  2. S. Akkoyun, to be published in Nucl. Instrum. Methods A

  3. J. Simpson, W. Korten, J. Nyberg, AGATA Technical Design Report, http://www-w2k.gsi.de/agata/Publications/TDR_EUJRA.pdf (2008)

  4. The official GRETINA homepage, http://grfs1.lbl.gov

  5. M. Schlarb, PhD Thesis, Technische Universität München (2009)

  6. M. Schlarb et al., Eur. Phys. J. A 47, 131 (2011)

    Article  ADS  Google Scholar 

  7. A.J. Boston et al., Nucl. Instrum. Methods B 261, 1098 (2007)

    ADS  Article  Google Scholar 

  8. P. Medina, in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, 2004, IMTC 04, Vol. 3 (IEEE, 2004) p. 1828

  9. B. Bruyneel, http://www.ikp.uni-koeln.de/research/agata/index.php?show=download

  10. Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods A4632272001

  11. Th. Kröll et al., Eur. Phys. J. A 20, 205 (2003) 10.1140/epja/i2002-10355-6

    ADS  Article  Google Scholar 

  12. B. Bruyneel, PhD Thesis, Universität zu Köln (2006)

  13. M.A. Deleplanque, R.M. Diamond (Editors), Gammasphere Proposal, Lawrence Berkeley National Laboratory Report 5202 (1988)

  14. D. Drouin et al., Scanning 29, 92 (2007)

    Article  Google Scholar 

  15. P. Medina, private communications (2006)

  16. G.F. Knoll, Radiation Detection and Measurement, 3rd edition (Wiley & Sons, 1999) p. 423

  17. B. Bruyneel et al., Nucl. Instrum. Methods A 569, 764 (2006)

    ADS  Article  Google Scholar 

  18. W. Shockley, J. Appl. Phys. 9, 635 (1938)

    ADS  Article  Google Scholar 

  19. S. Ramo, Proc. IRE 27, 584 (1939)

    Article  Google Scholar 

  20. I.N. Bronstein, Taschenbuch der Mathematik, 7th edition (Harri Deutsch, Thun, Frankfurt am Main, 2008) p. 222--223

  21. W.C. Dunlap, R.L. Watters, Phys. Rev. 92, 1396 (1953)

    ADS  Article  Google Scholar 

  22. U. Trottenberg, Multigrid (Academic Press, London, San Diego, 2000) p. 31

  23. B. Bruyneel et al., Nucl. Instrum. Methods A 569, 774 (2006)

    ADS  Article  Google Scholar 

  24. B. Bruyneel, AGATA Week 2007 (Legnaro, 2007), http://agata.pd.infn.it/LLP_Carrier/AGATA_Week_2007_pdf_private/Characterization%20and%20PSA/Bruyneel_AGATA_2007_talk2.pdf

  25. L. Mihailescu, PhD Thesis, Universität Bonn (2000)

  26. M.I. Nathan, Phys. Rev. 130, 2201 (1963)

    ADS  Article  Google Scholar 

  27. L. Reggiani et al., Phys. Rev. B 16, 2781 (1977)

    ADS  Article  Google Scholar 

  28. H. Ibach, H. Lüth, Solid-State Physics, 4th edition (Springer, Berlin, Heidelberg, 2010) p. 21

  29. L. Mihailescu et al., Nucl. Instrum. Methods A 447, 350 (2000)

    ADS  Article  Google Scholar 

  30. C.K. Jen, Proc. IRE 29, 345 (1941)

    Article  Google Scholar 

  31. G. Cavalleri, Nucl. Instrum. Methods A 92, 137 (1971)

    Article  Google Scholar 

  32. Z. He, Nucl. Instrum. Methods A 463, 250 (2001)

    ADS  Article  Google Scholar 

  33. J. Ljungvall, J. Nyberg, Nucl. Instrum. Methods A 546, 553 (2005)

    ADS  Article  Google Scholar 

  34. M. Descovich et al., Nucl. Instrum. Methods A 545, 199 (2005)

    ADS  Article  Google Scholar 

  35. I.J. Schönberg, Quart. Appl. Math. 4, 45 (1946)

    MathSciNet  Google Scholar 

  36. C.E. Shannon, Proc. Inst. Radio Eng. 37, 10 (1949)

    MathSciNet  Google Scholar 

  37. E.H.W. Meijering, in Medical Image Computing and Computer-Assisted Intervention - MICCAI’99, Second International Conference, Cambridge, UK, September 19-22, 1999, Proceedings, edited by C.J. Taylor, A.C.F. Colchester, LNCS 1679 (Springer, Berlin, Heidelberg, 1999) p. 210.

  38. J.J. Monaghan, Comput. Phys. Rep. 3, 71 (1985)

    ADS  Article  Google Scholar 

  39. G. Pascovici et al., WSEAS Trans. Cir. Sys. 7, 470 (2008)

    Google Scholar 

  40. B. Bruyneel et al., Nucl. Instrum. Methods A 599, 196 (2009)

    ADS  Article  Google Scholar 

  41. M.R. Dimmock, PhD Thesis, University of Liverpool (2008)

  42. F.C.L. Crespi et al., Nucl. Instrum. Methods A 593, 440 (2008)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schlarb.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schlarb, M., Gernhäuser, R., Klupp, S. et al. Pulse shape analysis for γ-ray tracking (Part I): Pulse shape simulation with JASS. Eur. Phys. J. A 47, 132 (2011). https://doi.org/10.1140/epja/i2011-11132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11132-2

Keywords

  • Charge Carrier
  • Drift Velocity
  • Pulse Shape
  • Transient Signal
  • Charge Signal