Skip to main content
Log in

Evaporation and fission decay of 132Ce compound nuclei at Ex=122 MeV: some limitations of the statistical model

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Light charged particle (LCP) emission in the evaporation residue (ER) and fusion fission (FF) channels have been studied for the 200 MeV 32S + 100Mo reaction, leading to 132Ce composite nuclei at E x =122 MeV. The main goal was to study the decay of 132 Ce on the basis of an extended set of observables, to get insights on the fission dynamics. The proton and alpha particle energy spectra, their multiplicities, ER-LCP angular correlations, ER and FF angular distributions, and ER and FF cross-sections were measured. The measured observables were compared with the Statistical Model (SM). Using standard parameters, the model was able to reproduce only the pre-scission multiplicities and the FF and ER cross-sections. The calculation was observed to strongly overestimate the proton and alpha particle multiplicities in the ER channel. Disagreements were also observed for the ER-LCP correlations, the LCP energy spectra and the ER angular distribution. By varying the SM input parameters over a wide range of values, it is shown that it is not possible to reproduce all the observables simultaneously with a unique set of parameters. The inadequacy of the model in reproducing the ER particle multiplicities is also observed analysing data from the literature for other systems in the A ≈ 150 and E x ≈ 100−200 MeV region. These results indicate serious limitations about the use of the SM in extracting information on fission dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Paul, M. Thoennesen, Annu. Rev. Nucl. Part. Sci. 44, 65 (1994).

    Article  ADS  Google Scholar 

  2. J.P. Lestone, Phys. Rev. C 59, 1549 (1999).

    Article  ADS  Google Scholar 

  3. A. Chatterjee et al., Phys. Rev. C 52, 3167 (1995).

    Article  ADS  Google Scholar 

  4. D.J. Hofman, B.B. Back, P. Paul, Nucl. Phys. A 599, 23c (1996).

    Article  ADS  Google Scholar 

  5. L. Fiore et al., Nucl. Phys. A 620, 71 (1997).

    Article  ADS  Google Scholar 

  6. V.A. Rubchenya et al., Phys. Rev. C 58, 1587 (1998).

    Article  ADS  Google Scholar 

  7. E. Vardaci , in Proceedings of the International Symposium on Dynamics Aspects of Nuclear Fission, Casta-Papiernicka, Slovak Republic, October 1998, edited by Yu.Ts. Oganessian, J. Kliman and S. Gmuca (World Scientific, Singapore, 2000) p. 261

  8. I. Diószegi et al., Phys. Rev. C 61, 024613 (2000).

    Article  ADS  Google Scholar 

  9. I. Diószegi et al., Phys. Rev. C 63, 014611 (2000).

    Article  Google Scholar 

  10. N.P. Shaw et al., Phys. Rev. C 61, 044612 (2000).

    Article  ADS  Google Scholar 

  11. A. Saxena et al., Phys. Rev. C 65, 064601 (2002).

    Article  ADS  Google Scholar 

  12. G. La Rana et al., Eur. Phys. J. A 16, 199 (2003).

    Article  ADS  Google Scholar 

  13. M. Thoennessen, G.F. Bertsch, Phys. Rev. Lett. 71, 4303 (1993).

    Article  ADS  Google Scholar 

  14. E. Vardaci et al., Eur. Phys. J. A 43, 127 (2010).

    Article  ADS  Google Scholar 

  15. E. Fioretto et al., IEEE Trans. Nucl. Sci. 44, 1017 (1997).

    Article  ADS  Google Scholar 

  16. J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

  17. A. Ordine, A. Boiano, E. Vardaci, A. Zaghi, A. Brondi, IEEE Trans. Nucl. Sci. 45, 873 (1998).

    Article  ADS  Google Scholar 

  18. E. Vardaci, VISM: a Computer Program for Nuclear Data Analysis, Annual Report Carnegie Mellon University, Pittsburgh, USA, 1989

  19. S. Beghini et al., Nucl. Instrum. Methods Phys. Res. A 239, 585 (1985).

    Article  ADS  Google Scholar 

  20. E.M. Kozulin et al., Instrum. Exp. Tech. 51, 44 (2008).

    Article  Google Scholar 

  21. J.R. Huizenga, A.N. Behkami, L.G. Moretto, Phys. Rev. 177, 1826 (1969).

    Article  ADS  Google Scholar 

  22. Lilita program was written by J. Gomez del Campo and R.G. Stockstad, Oak Ridge National Laboratory Report No. TM7295, 1981 (unpublished).

  23. A. Gavron, Phys. Rev. C 21, 230 (1980).

    Article  ADS  Google Scholar 

  24. N.N. Ajitanand, R. Lacey, G.F. Peaslee, E. Duek, J.M. Alexander, Nucl. Instrum. Methods Phys. Res. A 243, 111 (1986) and references therein

    Article  ADS  Google Scholar 

  25. J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1961).

    Google Scholar 

  26. F.G. Perey, Phys. Rev. 131, 745 (1963).

    Article  ADS  Google Scholar 

  27. D. Willmore, P.E. Hudson, Nucl. Phys. 55, 673 (1964).

    Article  Google Scholar 

  28. L.C. Vaz et al., Z. Phys. A 318, 231 (1984).

    Article  ADS  Google Scholar 

  29. A.J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  30. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  31. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  ADS  Google Scholar 

  32. V.E. Viola et al., Phys. Rev. C 31, 1550 (1985).

    Article  ADS  Google Scholar 

  33. N.N. Ajitanand et al., Phys. Rev. C 34, 877 (1986).

    Article  ADS  Google Scholar 

  34. R. Lacey et al., Phys. Rev. C 37, 2540 (1988).

    Article  ADS  Google Scholar 

  35. W.E. Parker et al., Nucl. Phys. A 568, 633 (1994).

    Article  ADS  Google Scholar 

  36. E. Duek et al., Phys. Lett. B 131, 297 (1983).

    Article  ADS  Google Scholar 

  37. L. Schad et al., Z. Phys. A 318, 179 (1984).

    Article  ADS  Google Scholar 

  38. E. Vardaci et al., Phys. Lett. B 480, 239 (2000).

    Article  ADS  Google Scholar 

  39. S.K. Kataria, V.S. Ramamurthy, S.S. Kapoor, Phys. Rev. C 18, 549 (1978).

    Article  ADS  Google Scholar 

  40. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 612 (1975).

    Google Scholar 

  41. J.P. Lestone, Phys. Rev. C 52, 1118 (1995).

    Article  ADS  Google Scholar 

  42. R.J. Charity, Computer code GEMINI (unpublished).

  43. M. Gonin et al., Phys. Lett. B 217, 406 (1989).

    Article  ADS  Google Scholar 

  44. J.M. Alexander , Proceedings of the Symposium on Nuclear Dynamical and Nuclear Disassembly, 1988, Dallas, Texas, USA, edited by J.B. Natowitz (World Scientific, Singapore, 1989) p. 211

  45. J.L. Wile et al., Phys. Rev. C 51, 1693 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moro.

Additional information

Communicated by C. Signorini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Nitto, A., Vardaci, E., Brondi, A. et al. Evaporation and fission decay of 132Ce compound nuclei at Ex=122 MeV: some limitations of the statistical model. Eur. Phys. J. A 47, 83 (2011). https://doi.org/10.1140/epja/i2011-11083-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11083-6

Keywords

Navigation