First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

  • M. Beck
  • S. Coeck
  • V. Yu. Kozlov
  • M. Breitenfeldt
  • P. Delahaye
  • P. Friedag
  • F. Glück
  • M. Herbane
  • A. Herlert
  • I. S. Kraev
  • J. Mader
  • M. Tandecki
  • S. Van Gorp
  • F. Wauters
  • Ch. Weinheimer
  • F. Wenander
  • N. Severijns
  • the ISOLDE Collaboration
Regular Article - Experimental Physics

Abstract.

The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the \( \beta\) -\( \nu\) angular correlation via the measurement of the recoil energy spectrum after \( \beta\) -decay. As a first step the recoil ions from the \( \beta^{-}_{}\) -decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

References

  1. 1.
    N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006) doi:10.1103/RevModPhys.78.991 CrossRefADSGoogle Scholar
  2. 2.
    J.D. Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4, 206 (1957) doi:10.1016/0029-5582(87)90019-8 CrossRefGoogle Scholar
  3. 3.
    A.S. Carnoy, J. Deutsch, T.A. Girard, R. Prieels, Phys. Rev. C 43, 2825 (1991) doi:10.1103/PhysRevC.43.2825 CrossRefADSGoogle Scholar
  4. 4.
    P.A. Quin, J. Deutsch, T.E. Pickering, J.E. Schewe, P.A. Voytas, Phys. Rev. D 47, 1247 (1993) doi:10.1103/PhysRevD.47.1247 CrossRefADSGoogle Scholar
  5. 5.
    N. Severijns et al., Phys. Rev. Lett. 70, 4047 (1993)CrossRefADSGoogle Scholar
  6. 6.
    M. Skalsey, Phys. Rev. C 49, R620 (1994) doi:10.1103/PhysRevC.49.R620 CrossRefADSGoogle Scholar
  7. 7.
    M. Allet et al., Phys. Lett. B 383, 139 (1996) doi:10.1016/0370-2693(96)00724-1 CrossRefADSGoogle Scholar
  8. 8.
    E. Thomas et al., Nucl. Phys. A 694, 559 (2001) doi:10.1016/S0375-9474(01)01083-1 CrossRefADSGoogle Scholar
  9. 9.
    R. Huber et al., Phys. Rev. Lett. 90, 202301 (2003) doi:10.1103/PhysRevLett.90.202301 CrossRefADSGoogle Scholar
  10. 10.
    H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) doi:10.1016/j.ppnp.2007.05.002 CrossRefADSGoogle Scholar
  11. 11.
    A. Kozela et al., Phys. Rev. Lett. 102, 172301 (2009) doi:10.1103/PhysRevLett.102.172301 CrossRefADSGoogle Scholar
  12. 12.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009) doi:10.1103/PhysRevC.79.055502 CrossRefADSGoogle Scholar
  13. 13.
    J.R.A. Pitcairn et al., Phys. Rev. C 79, 015501 (2009) doi:10.1103/PhysRevC.79.015501 CrossRefADSGoogle Scholar
  14. 14.
    F. Wauters et al., Phys. Rev. C 80, 062501(R) (2009) doi:10.1103/PhysRevC.80.062501 CrossRefADSGoogle Scholar
  15. 15.
    J.A. Behr, G. Gwinner, J. Phys. G 36, 033101 (2009) doi:10.1088/0954-3899/36/3/033101 CrossRefADSGoogle Scholar
  16. 16.
    C.H. Johnson, F. Pleasonton, A.H. Snell, Phys. Rev. 132, 1149 (1963) doi:10.1103/PhysRev.132.1149 CrossRefADSGoogle Scholar
  17. 17.
    N.D. Scielzo et al., Phys. Rev. Lett. 93, 102501 (2004) doi:10.1103/PhysRevLett.93.102501 CrossRefADSGoogle Scholar
  18. 18.
    A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005) doi:10.1103/PhysRevLett.94.142501 CrossRefADSGoogle Scholar
  19. 19.
    E.G. Adelberger et al., Phys. Rev. Lett. 83, 1299 (1999)CrossRefADSGoogle Scholar
  20. 20.
    M. Beck et al., Nucl. Instrum. Methods A 503, 567 (2003) doi:10.1016/S0168-9002(03)00994-X CrossRefADSGoogle Scholar
  21. 21.
    D. Rodriguez et al., Nucl. Instrum. Methods A 565, 876 (2006) doi:10.1016/j.nima.2006.05.165 CrossRefADSGoogle Scholar
  22. 22.
    F. Glück et al., Eur. Phys. J. A 23, 135 (2005) doi:10.1140/epja/i2004-10057-1 CrossRefADSGoogle Scholar
  23. 23.
    P.A. Vetter, J.R. Abo-Shaeer, S.J. Freedman, R. Maruyama et al., Phys. Rev. C 77, 035502 (2008) doi:10.1103/PhysRevC.77.035502 CrossRefADSGoogle Scholar
  24. 24.
    X. Fléchard et al., Phys. Rev. Lett. 101, 212504 (2008) doi:10.1103/PhysRevLett.101.212504 CrossRefADSGoogle Scholar
  25. 25.
    S. Baeßler et al., Eur. Phys. J. A 38, 17 (2008) doi:10.1140/epja/i2008-10660-0 CrossRefADSGoogle Scholar
  26. 26.
    D. Počanić et al., Nucl. Instrum. Methods A 611, 211 (2009) doi:10.1016/j.nima.2009.07.065 CrossRefGoogle Scholar
  27. 27.
    K. Blaum, Phys. Rep. 425, 1 (2006) doi:10.1016/j.physrep.2005.10.011 CrossRefADSGoogle Scholar
  28. 28.
    A. Picard et al., Nucl. Instrum. Methods B 63, 345 (1992) doi:10.1016/0168-583X(92)95119-C CrossRefADSGoogle Scholar
  29. 29.
    V.M. Lobashev, P.E. Spivak, Nucl. Instrum. Methods A 240, 305 (1985) doi:10.1016/0168-9002(85)90640-0 CrossRefADSGoogle Scholar
  30. 30.
    E. Kugler et al., Nucl. Instrum. Methods B 70, 41 (1992) doi:10.1016/0168-583X(92)95907-9 CrossRefADSGoogle Scholar
  31. 31.
    F. Ames et al., Nucl. Instrum. Methods A 538, 17 (2005) doi:10.1016/j.nima.2004.08.119 CrossRefADSGoogle Scholar
  32. 32.
    S. Coeck et al., Nucl. Instrum. Methods A 572, 585 (2007) doi:10.1016/j.nima.2006.11.054 CrossRefADSGoogle Scholar
  33. 33.
    G. Savard et al., Phys. Lett. A 158, 247 (1991) doi:10.1016/0375-9601(91)91008-2 CrossRefADSGoogle Scholar
  34. 34.
    S. Coeck et al., Nucl. Instrum. Methods A 574, 370 (2007) doi:10.1016/j.nima.2007.02.079 CrossRefADSGoogle Scholar
  35. 35.
    The KATRIN Collaboration (J. Angrik), KATRIN Design Report 2004, FZKA Scientific Report 7090, 2005, available online at http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf
  36. 36.
    M. Beck for The KATRIN Collaboration, J. Phys.: Conf. Ser. 203, 012097 (2010) doi:10.1088/1742-6596/203/1/012097 CrossRefADSGoogle Scholar
  37. 37.
    E. Liénard et al., Nucl. Instrum. Methods A 551, 375 (2005) doi:10.1016/j.nima.2005.06.069 CrossRefADSGoogle Scholar
  38. 38.
    S. Coeck et al., Nucl. Instrum. Methods A 557, 516 (2006) doi:10.1016/j.nima.2005.11.061 CrossRefADSGoogle Scholar
  39. 39.
    V.Yu. Kozlov et al., Int. J. Mass Spectrom. 251, 159 (2006) doi:10.1016/j.ijms.2006.01.050 CrossRefGoogle Scholar
  40. 40.
    V.Yu. Kozlov et al., Nucl. Instrum. Methods B 266, 4515 (2008) doi:10.1016/j.nimb.2008.05.150 CrossRefADSGoogle Scholar
  41. 41.
    E.M. Haynes (Editor), Handbook of Chemistry and Physics, 91st edition (CRC Press, 2010)Google Scholar
  42. 42.
    T.A. Carlson et al., Phys. Rev. 169, 27 (1968) doi:10.1103/PhysRev.169.27 CrossRefADSGoogle Scholar
  43. 43.
    M. Tandecki et al., Nucl. Instrum. Methods A 629, 396 (2011) doi:10.1016/j.nima.2010.10.111 CrossRefADSGoogle Scholar
  44. 44.
    S. van Gorp, to be published in Nucl. Instrum. Methods A, Vol. 638 (2011) doi:10.1016/j.nima.2010.11.032
  45. 45.
    N.D. Scielzo et al., Phys. Rev. A 68, 022716 (2003) doi:10.1103/PhysRevA.68.022716 CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Beck
    • 1
  • S. Coeck
    • 2
  • V. Yu. Kozlov
    • 2
  • M. Breitenfeldt
    • 2
  • P. Delahaye
    • 3
  • P. Friedag
    • 1
  • F. Glück
    • 3
    • 4
  • M. Herbane
    • 2
  • A. Herlert
    • 5
  • I. S. Kraev
    • 2
  • J. Mader
    • 1
  • M. Tandecki
    • 2
  • S. Van Gorp
    • 2
  • F. Wauters
    • 2
  • Ch. Weinheimer
    • 1
  • F. Wenander
    • 5
  • N. Severijns
    • 2
  • the ISOLDE Collaboration
    • 1
  1. 1.Institut für KernphysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Instituut voor Kern- en StralingsfysicaK.U. LeuvenLeuvenBelgium
  3. 3.Institut für Experimentelle KernphysikKITKarlsruheGermany
  4. 4.KFKIRMKIBudapestHungary
  5. 5.Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations