Skip to main content
Log in

The low-energy dipole structure of 232Th , 236U and 238U actinide nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this study, \(\ensuremath I^{\pi} = 1^{+}\) and \(\ensuremath I^{\pi} = 1^{-}\) dipole mode excitations are systematically investigated within the rotational and translational + Galilean invariant quasiparticle random-phase approximation for 232Th , 236U , and 238U actinide nuclei. It is shown that the investigated nuclei reach a B(M1) strength structure, which corresponds to the scissors mode. The calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations are consistent with the available experimental data. The results of calculations indicate large differences to the rare-earth nuclei as is the case for the experiment: a doubling of the observed dipole strengths and a shift of the energy centroid to the lower energies by about 800keV. The calculations indicate the presence of a few prominent negative-parity \(\ensuremath K^{\pi} = 1^{-}\) states in the 2.0-4.0MeV energy interval. The occurrence of the negative-parity dipole states with the rather high B(E1) value less than 4MeV shows the necessity of explicit parity measurements for the correct determination of the scissors mode strength in 232Th , 236U , and 238U isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Richter, Prog. Part. Nucl. Phys. 34, 261 (1995)

    Article  ADS  Google Scholar 

  2. N. Lo Iudice, Riv. Nuovo Cimento 23, 1 (2000)

    Google Scholar 

  3. N. Lo Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978)

    Article  ADS  Google Scholar 

  4. F. Iachello, Nucl. Phys. A 358, 89c (1981)

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Iachello, Phys. Rev. Lett. 53, 1427 (1984)

    Article  ADS  Google Scholar 

  6. D. Bohle et al., Phys. Lett. B 137, 27 (1984)

    Article  ADS  Google Scholar 

  7. P. Von Brentano et al., Phys. Rev. Lett. 76, 2029 (1996)

    Article  ADS  Google Scholar 

  8. H. Maser et al., Phys. Rev. C 54, R2129 (1996)

    Article  ADS  Google Scholar 

  9. N. Pietralla et al., Phys. Rev. C 52, R2317 (1995)

    Article  ADS  Google Scholar 

  10. J. Enders et al., Phys. Rev. C 71, 014306 (2005)

    Article  ADS  Google Scholar 

  11. R.D. Heil et al., Nucl. Phys. A 476, 39 (1988)

    Article  ADS  Google Scholar 

  12. J. Margraf et al., Phys. Rev. C 42, 771 (1990)

    Article  ADS  Google Scholar 

  13. U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996)

    Article  ADS  Google Scholar 

  14. D. Zawischa et al., Phys. Rev. C 42, 1461 (1990)

    Article  ADS  Google Scholar 

  15. C. De Coster et al., Nucl. Phys. A 542, 375 (1992)

    Article  ADS  Google Scholar 

  16. R. Nojarov et al., Nucl. Phys. A 563, 349 (1993)

    Article  ADS  Google Scholar 

  17. V.G. Soloviev et al., Nucl. Phys. A 600, 155 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. V.G. Soloviev et al., J. Phys. G 21, 1217 (1995)

    Article  ADS  Google Scholar 

  19. V.G. Soloviev et al., Z. Phys. A 358, 287 (1997)

    Article  ADS  Google Scholar 

  20. V.G. Soloviev et al., J. Phys. G: Nucl. Part. Phys. 25, 1023 (1997)

    Article  ADS  Google Scholar 

  21. V.G. Soloviev et al., Phys. Part. Nucl. 31, 385 (2000)

    Google Scholar 

  22. M.I. Baznat, N.I. Pyatov, Sov. J. Nucl. Phys. 21, 365 (1975)

    Google Scholar 

  23. N. Pyatov, D.I. Salamov, Nucleonica 22, 127 (1977)

    Google Scholar 

  24. A.A. Kuliev et al., Int. J. Mod. Phys. E 9, 249 (2000)

    ADS  Google Scholar 

  25. A.A. Kuliev et al., J. Phys. G 30, 1253 (2004)

    Article  ADS  Google Scholar 

  26. E. Guliyev et al., Phys. Lett. B 532, 173 (2002)

    Article  ADS  Google Scholar 

  27. A. Linnemann et al., Phys. Lett. B 554, 15 (2003)

    Article  ADS  Google Scholar 

  28. E. Guliyev et al., Eur. Phys. J. A 39, 323 (2009)

    Article  ADS  Google Scholar 

  29. A.A. Kuliev et al., J. Phys. G 28, 407 (2002)

    Article  ADS  Google Scholar 

  30. E. Guliyev et al., Eur. Phys. J. A 27, 313 (2006)

    Article  ADS  Google Scholar 

  31. E. Guliyev et al., Cent. Eur. J. Phys. 7, 731 (2009)

    Article  MathSciNet  Google Scholar 

  32. E. Guliyev et al., Acta Phys. Pol. B 40, 653 (2009)

    ADS  Google Scholar 

  33. A.A. Kuliev, N. Pyatov, Sov. J. Nucl. Phys. 20, 297 (1974)

    Google Scholar 

  34. N. Paar et al., Phys. Rev. C 74, 014318 (2006)

    Article  ADS  Google Scholar 

  35. I. Stetcu, C.W. Johnson Phys. Rev. C 66, 034301 (2002)

    Article  Google Scholar 

  36. K.G. Dietrich et al., Phys. Lett. B 220, 351 (1989)

    Article  ADS  Google Scholar 

  37. N. Lo Iudice, Nucl. Phys. A 605, 61 (1996)

    Article  ADS  Google Scholar 

  38. A.A. Raduta et al., Nucl. Phys. A 584, 84 (1995)

    Article  ADS  Google Scholar 

  39. E. Moya de Guerra et al., Phys. Lett. B 196, 409 (1987)

    Article  ADS  Google Scholar 

  40. A.E.L. Dieperink, E. Moya de Guerra, Phys. Lett. B 189, 267 (1989)

    ADS  Google Scholar 

  41. E. Garrido et al., Phys. Rev. C 44, R1250 (1991)

    Article  ADS  Google Scholar 

  42. R. Nojarov, A. Faessler, Nucl. Phys. A 484, 1 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Sarriguren et al., J. Phys. G: Nucl. Part. Phys. 20, 315 (1994)

    Article  ADS  Google Scholar 

  44. P. Sarriguren et al., Phys. Rev. 54, 690 (1996)

    Article  ADS  Google Scholar 

  45. O. Bohr, B. Mottelson, Nuclear Structure, Vol. 2 (New York, W.A. Benjamin, 1975)

  46. J. Dudek, T. Werner, J. Phys. G 4, 1543 (1978)

    Article  ADS  Google Scholar 

  47. S. Raman et al., At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  48. V.G. Soloviev, Theory of Complex Nuclei, Vol. 1 (New York, Pergamon Press, 1976)

  49. S. Gabrakov et al., Nucl. Phys. A 182, 625 (1972)

    Article  ADS  Google Scholar 

  50. J.T. Caldwell et al., Phys. Rev. C 21, 1215 (1980)

    Article  ADS  Google Scholar 

  51. D. Savran et al., Phys. Rev. C 71, 034304 (2005)

    Article  ADS  Google Scholar 

  52. H. Friedrichs et al., Nucl. Phys. A 567, 266 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ertugral.

Additional information

Communicated by W. Nazarewicz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuliev, A.A., Guliyev, E., Ertugral, F. et al. The low-energy dipole structure of 232Th , 236U and 238U actinide nuclei. Eur. Phys. J. A 43, 313–321 (2010). https://doi.org/10.1140/epja/i2010-10933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10933-y

Keywords

Navigation