Skip to main content
Log in

Slowly rotating neutron stars and hadronic stars in the chiral SU(3) quark mean-field model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The equations of state for neutron matter, strange and non-strange hadronic matter in the chiral SU(3) quark mean-field model are applied in the study of slowly rotating neutron stars and hadronic stars. The radius, mass, moment of inertia, and other physical quantities are carefully examined. The effect of the nucleon crust for the strange hadronic star is exhibited. Our results show that the rotation can increase the maximum mass of compact stars significantly. For a big enough mass of pulsars which cannot be explained as strange hadronic stars, theoretical approaches to increase the maximum mass are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  2. D.G. Ravenhall, C.J. Pethick, Astrophys. J. 424, 846 (1994)

    Article  ADS  Google Scholar 

  3. V. Kalogera, D. Psaltis, Phys. Rev. D 61, 024009 (1999)

    Article  ADS  Google Scholar 

  4. M. Prakash et al., Phys. Rep. 280, 1 (1997)

    Article  ADS  Google Scholar 

  5. S. Gupta et al., Astrophys. J. 662, 1188 (1971)

    Article  ADS  Google Scholar 

  6. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  7. N.K. Glendenning, Astrophys. J. 293, 470 (1985)

    Article  ADS  Google Scholar 

  8. C. Wu, R.K. Su, J. Phys. G 36, 095101 (2009)

    Article  ADS  Google Scholar 

  9. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  10. T. Klähn et al., Phys. Rev. C 74, 035802 (2006)

    Article  ADS  Google Scholar 

  11. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  12. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Haensel, J.L. Zdunik, R. Schaefer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  14. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  15. R.X. Xu, Astrophys. J. 596, L59 (2003)

    Article  ADS  Google Scholar 

  16. J.Y. Shen, Y. Zhang, B. Wang, R.K. Su, Int. J. Mod. Phys. A 20, 7547 (2005)

    Article  MATH  ADS  Google Scholar 

  17. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)

    Article  ADS  Google Scholar 

  18. V.A. Ambartsumyan, G.S. Saakyan, Sov. Astron. AJ 4, 187 (1960)

    ADS  Google Scholar 

  19. N.K. Glendenning, Phys. Lett. B 114, 392 (1982)

    Article  ADS  Google Scholar 

  20. J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996)

    Article  ADS  Google Scholar 

  21. M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C 58, 3688 (1998)

    Article  ADS  Google Scholar 

  22. M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C 61, 055801 (2000)

    Article  ADS  Google Scholar 

  23. P. Wang, Z.Y. Zhang, Y.W. Yu, R.K. Su, H.Q. Song, Nucl. Phys. A 688, 791 (2001)

    Article  ADS  Google Scholar 

  24. P. Wang, H. Guo, Z.Y. Zhang, Y.W. Yu, R.K. Su, H.Q. Song, Nucl. Phys. A 705, 455 (2002)

    Article  ADS  Google Scholar 

  25. P. Wang, S. Lawley, D.B. Leinweber, A.W. Thomas, A.G. Williams, Phys. Rev. C 72, 045801 (2005)

    Article  ADS  Google Scholar 

  26. P.C.C. Champion, arXiv:0907.3219

  27. J.B. Hartle, Astrophys. J. 150, 1005 (1967)

    Article  ADS  Google Scholar 

  28. J.B. Hartle, K.S. Thorne, Astrophys. J. 153, 807 (1968)

    Article  ADS  Google Scholar 

  29. T. Regge, J. Wheeler, Phys. Rev. 108, 1063 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  31. P.W. Anderson, N. Itoh, Nature 256, 25 (1975)

    Article  ADS  Google Scholar 

  32. N.K. Glendenning, F. Weber, Astrophys. J. 400, 647 (1992)

    Article  ADS  Google Scholar 

  33. J.L. Zdunik, P. Haensel, E. Gourgoulhon, Astron. Astrophys. 372, 535 (2001)

    Article  ADS  Google Scholar 

  34. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1974)

    Article  ADS  Google Scholar 

  35. S.B. Rüster, M. Hempel, J. Schaffner-Bielich, Phys. Rev. C 73, 035804 (2006)

    Article  ADS  Google Scholar 

  36. F. Weber, N.K. Glendenning, Astrophys. J. 390, 541 (1992)

    Article  ADS  Google Scholar 

  37. M. Hanauske, D. Zschiesche, S. Pal, S. Schramm, H. Stöcker, W. Greiner, Astrophys. J. 537, 958 (2000)

    Article  ADS  Google Scholar 

  38. S. Schramm, D. Zschiesche, J. Phys. G 29, 531 (2003)

    Article  ADS  Google Scholar 

  39. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Astrophys. J. 398, 203 (1992)

    Article  ADS  Google Scholar 

  40. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Astrophys. J. 422, 227 (1994)

    Article  ADS  Google Scholar 

  41. T.W. Baumgarte, S.L. Shapiro, M. Shibata, Astrophys. J. 528, L29 (2000)

    Article  ADS  Google Scholar 

  42. N.D. Lyford, T.W. Baumgarte, S.L. Shapiro, Astrophys. J. 583, 410 (2003)

    Article  ADS  Google Scholar 

  43. I.A. Morrison, T.W. Baumgarte, S.L. Shapiro, Astrophys. J. 610, 941 (2004)

    Article  ADS  Google Scholar 

  44. G.F. Burgio, H.-J. Schulze, F. Weber, Astron. Astrophys. 408, 675 (2003)

    Article  ADS  Google Scholar 

  45. Baldo, arXiv:astro-ph/0312446

  46. N.K. Glendenning, Phys. Rev. D 46, 1274 (1992)

    Article  ADS  Google Scholar 

  47. A. Rosenhauer et al., Nucl. Phys. A 540, 630 (1992)

    Article  ADS  Google Scholar 

  48. F. Weber, J. Phys. G 25, R195 (1999)

    Article  ADS  Google Scholar 

  49. M. Alford et al., Nature 455, E7 (2007)

    Article  ADS  Google Scholar 

  50. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)

    Article  ADS  Google Scholar 

  51. L.Ya. Glozman, R.F. Wagenbrunn, Phys. Rev. D 77, 054027 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyu Yin.

Additional information

Communicated by M.C. Birse

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Zang, J. & Su, RK. Slowly rotating neutron stars and hadronic stars in the chiral SU(3) quark mean-field model. Eur. Phys. J. A 43, 295–301 (2010). https://doi.org/10.1140/epja/i2010-10916-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10916-0

Keywords

Navigation