Skip to main content

Advertisement

Log in

QCD thermodynamics from the lattice

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the current methods and results of lattice simulations of quantum chromodynamics at nonzero temperatures and densities. The review is intended to introduce the subject to interested nonspecialists and beginners. It includes a brief overview of lattice gauge theory, a discussion of the determination of the crossover temperature, the QCD phase diagram at zero and nonzero densities, the equation of state, some in-medium properties of hadrons including charmonium, and some plasma transport coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bazavov, Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks, arXiv: 0903.3598.

  2. F. Wilczek, QCD in extreme conditions, arXiv: hep-ph/0003183.

  3. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

  4. I. Montvay, G. Münster, Quantum Fields on the Computer (Cambridge University Press, Cambridge, 1997).

  5. M. Creutz, Quantum Fields on the Computer (World Scientific, Singapore, 1992).

  6. T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynamics (World Scientific, Singapore, 2006).

  7. K.G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).

    Google Scholar 

  8. A.M. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Math. Phys. 12, 2259 (1971).

    Google Scholar 

  9. A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett. B 59, 82 (1975).

    Google Scholar 

  10. M. Lüscher, P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97, 59 (1985).

    Google Scholar 

  11. M. Lüscher, P. Weisz, Computation of the Action for On-Shell Improved Lattice Gauge Theories at Weak Coupling, Phys. Lett. B 158, 250 (1985).

    Google Scholar 

  12. K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory, Nucl. Phys. B 226, 205 (1983).

    Google Scholar 

  13. B. Sheikholeslami, R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259, 572 (1985).

    Google Scholar 

  14. Alpha Collaboration (R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz), Lattice QCD with a chirally twisted mass term, JHEP 08, 058 (2001) [arXiv: hep-lat/0101001].

  15. R. Frezzotti, G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP 08, 007 (2004) [arXiv: hep-lat/0306014].

  16. CP-PACS Collaboration (A. Ali Khan), Phase structure and critical temperature of two flavor QCD with renormalization group improved gauge action and clover improved Wilson quark action, Phys. Rev. D 63, 034502 (2001) [arXiv: hep-lat/0008011].

  17. S. Ejiri, Lattice QCD thermodynamics with Wilson quarks, Prog. Theor. Phys. Suppl. 168, 245 (2007) [arXiv: 0704.3747].

  18. HPQCD Collaboration (E. Follana, A. Hart, C.T.H. Davies, Q. Mason), The low-lying Dirac spectrum of staggered quarks, Phys. Rev. D 72, 054501 (2005) [arXiv: hep-lat/0507011].

    Google Scholar 

  19. S.R. Sharpe, Rooted staggered fermions: Good, bad or ugly?, PoS LAT2006, 022 (2006) [arXiv: hep-lat/ 0610094].

  20. P. Lepage, Perturbative improvement for lattice QCD: An update, Nucl. Phys. B Proc. Suppl. 60, 267 (1998) [arXiv: hep-lat/9707026].

  21. MILC Collaboration (C.W. Bernard), Quenched hadron spectroscopy with improved staggered quark action, Phys. Rev. D 58, 014503 (1998) [arXiv: hep-lat/9712010].

    Google Scholar 

  22. J.F. Lagae, D.K. Sinclair, Improving the staggered quark action to reduce flavour symmetry violations, Nucl. Phys. Proc. Suppl. 63, 892 (1998) [arXiv: hep-lat/9709035].

    Google Scholar 

  23. J.F. Lagae, D.K. Sinclair, Improved staggered quark actions with reduced flavour symmetry violations for lattice QCD, Phys. Rev. D 59, 014511 (1999) [arXiv: hep-lat/9806014].

    Google Scholar 

  24. MILC Collaboration (K. Orginos, D. Toussaint), Testing improved actions for dynamical Kogut-Susskind quarks, Phys. Rev. D 59, 014501 (1999) [arXiv: hep-lat/9805009].

    Google Scholar 

  25. MILC Collaboration (D. Toussaint, K. Orginos), Tests of improved Kogut-Susskind fermion actions, Nucl. Phys. Proc. Suppl. 73, 909 (1999) [arXiv: hep-lat/9809148].

    Google Scholar 

  26. G.P. Lepage, Flavor-symmetry restoration and Symanzik improvement for staggered quarks, Phys. Rev. D 59, 074502 (1999) [arXiv: hep-lat/9809157].

  27. MILC Collaboration (K. Orginos, D. Toussaint, R.L. Sugar), Variants of fattening and flavor symmetry restoration, Phys. Rev. D 60, 054503 (1999) [arXiv: hep-lat/9903032].

    Google Scholar 

  28. MILC Collaboration (C.W. Bernard), Scaling tests of the improved Kogut-Susskind quark action, Phys. Rev. D 61, 111502 (2000) [arXiv: hep-lat/9912018].

  29. U.M. Heller, F. Karsch, B. Sturm, Improved staggered fermion actions for QCD thermodynamics, Phys. Rev. D 60, 114502 (1999) [arXiv: hep-lat/9901010].

    Google Scholar 

  30. F. Karsch, E. Laermann, A. Peikert, The pressure in 2, 2+1 and 3 flavour QCD, Phys. Lett. B 478, 447 (2000) [arXiv: hep-lat/0002003].

    Google Scholar 

  31. HPQCD Collaboration (E. Follana), Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev. D 75, 054502 (2007) [arXiv: hep-lat/0610092].

    Google Scholar 

  32. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabó, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643, 46 (2006) [arXiv: hep-lat/0609068].

    Google Scholar 

  33. N. Ishizuka, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice, Nucl. Phys. B 411, 875 (1994).

    Google Scholar 

  34. D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288, 342 (1992) [arXiv: hep-lat/9206013].

  35. V. Furman, Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl. Phys. B 439, 54 (1995) [arXiv: hep-lat/9405004].

  36. R.G. Edwards, U.M. Heller, R. Narayanan, Spectral flow, chiral condensate and topology in lattice QCD, Nucl. Phys. B 535, 403 (1998) [arXiv: hep-lat/9802016].

    Google Scholar 

  37. M. Golterman, Y. Shamir, B. Svetitsky, Localization properties of lattice fermions with plaquette and improved gauge actions, Phys. Rev. D 72, 034501 (2005) [arXiv: hep-lat/0503037].

    Google Scholar 

  38. RBC Collaboration (D.J. Antonio), Localization and chiral symmetry in 3 flavor domain wall QCD, Phys. Rev. D 77, 014509 (2008) [arXiv: 0705.2340].

    Google Scholar 

  39. P. Chen, The finite temperature QCD phase transition with domain wall fermions, Phys. Rev. D 64, 014503 (2001) [arXiv: hep-lat/0006010].

  40. RBC-HotQCD Collaboration (M. Cheng), QCD Thermodynamics with Domain Wall Fermions, PoS LAT2008, 180 (2008) [arXiv: 0810.1311].

  41. R. Narayanan, H. Neuberger, A Construction of lattice chiral gauge theories, Nucl. Phys. B 443, 305 (1995) [arXiv: hep-th/9411108].

  42. H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417, 141 (1998) [arXiv: hep-lat/9707022].

  43. P.H. Ginsparg, K.G. Wilson, A Remnant of Chiral Symmetry on the Lattice, Phys. Rev. D 25, 2649 (1982).

    Google Scholar 

  44. M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428, 342 (1998) [arXiv: hep-lat/9802011].

  45. Z. Fodor, S.D. Katz, K.K. Szabó, Dynamical overlap fermions, results with hybrid Monte-Carlo algorithm, JHEP 08, 003 (2004) [arXiv: hep-lat/0311010].

  46. P. Hegde, F. Karsch, E. Laermann, S. Shcheredin, Lattice cut-off effects and their reduction in studies of QCD thermodynamics at non-zero temperature and chemical potential, Eur. Phys. J. C 55, 423 (2008) [arXiv: 0801.4883].

    Google Scholar 

  47. W. Bietenholz, R. Brower, S. Chandrasekharan, U.J. Wiese, Progress on perfect lattice actions for QCD, Nucl. Phys. Proc. Suppl. 53, 921 (1997) [arXiv: hep-lat/9608068].

    Google Scholar 

  48. R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and alpha-s in SU(2) Yang-Mills theory, Nucl. Phys. B 411, 839 (1994) [arXiv: hep-lat/9310022].

    Google Scholar 

  49. R. Gupta, The EOS from simulations on BlueGene L Supercomputer at LLNL and NYBlue, PoS LAT2008, 170 (2008).

  50. HotQCD Collaboration (C. DeTar, R. Gupta), Toward a precise determination of $T_c$ with 2+1 flavors of quarks, PoS LAT2007, 179 (2007) [arXiv: 0710.1655].

  51. HotQCD Collaboration (A. Bazavov), Equation of state and QCD transition at finite temperature, arXiv: 0903.4379.

  52. MILC Collaboration (C. Bernard), QCD thermodynamics with three flavors of improved staggered quarks, Phys. Rev. D 71, 034504 (2005) [arXiv: hep-lat/0405029].

    Google Scholar 

  53. M. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, New York, 1995).

  54. RBC-Bielefeld Collaboration, F. Karsch, Fluctuations of Goldstone modes and the chiral transition in QCD, Nucl. Phys. A 820, 99C (2008) [arXiv: 0810.3078].

  55. Y. Maezawa, Thermodynamics and heavy-quark free energies at finite temperature and density with two flavors of improved Wilson quarks, PoS LAT2007, 207 (2007) [arXiv: 0710.0945].

  56. W. Söldner, Quark Mass Dependence of the QCD Equation of State on $N_\tau$ = 8 Lattices, PoS LAT2008, 173 (2008).

  57. Y. Aoki, The QCD transition temperature: results with physical masses in the continuum limit II, arXiv: 0903.4155.

  58. MILC Collaboration (C. Aubin), Light hadrons with improved staggered quarks: Approaching the continuum limit, Phys. Rev. D 70, 094505 (2004) [arXiv: hep-lat/0402030].

    Google Scholar 

  59. G. Boyd, Equation of state for the SU(3) gauge theory, Phys. Rev. Lett. 75, 4169 (1995) [arXiv: hep-lat/9506025].

    Google Scholar 

  60. R.D. Pisarski, F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29, 338 (1984).

    Google Scholar 

  61. F. Karsch, E. Laermann, C. Schmidt, The chiral critical point in 3-flavor QCD, Phys. Lett. B 520, 41 (2001) [arXiv: hep-lat/0107020].

    Google Scholar 

  62. F. Karsch, Where is the chiral critical point in 3-flavor QCD?, Nucl. Phys. Proc. Suppl. 129, 614 (2004) [arXiv: hep-lat/0309116].

    Google Scholar 

  63. Y. Aoki, G. Endrödi, Z. Fodor, S.D. Katz, K.K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443, 675 (2006) [arXiv: hep-lat/0611014].

    Google Scholar 

  64. E. Laermann, O. Philipsen, Status of lattice QCD at finite temperature, Annu. Rev. Nucl. Part. Sci. 53, 163 (2003) [arXiv: hep-ph/0303042].

    Google Scholar 

  65. P. de Forcrand, O. Philipsen, The chiral critical line of $N_f$ = 2+1 QCD at zero and non-zero baryon density, JHEP 01, 077 (2007) [arXiv: hep-lat/0607017].

  66. T. Mendes, Universality and Scaling at the chiral transition in two- flavor QCD at finite temperature, PoS LAT2007, 208 (2007) [arXiv: 0710.0746].

  67. J.B. Kogut, D.K. Sinclair, Evidence for O(2) universality at the finite temperature transition for lattice QCD with 2 flavours of massless staggered quarks, Phys. Rev. D 73, 074512 (2006) [arXiv: hep-lat/0603021].

    Google Scholar 

  68. M. D’Elia, A. Di Giacomo, C. Pica, Two flavor QCD and confinement, Phys. Rev. D 72, 114510 (2005) [arXiv: hep-lat/0503030].

  69. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58, 096007 (1998) [arXiv: hep-ph/9804290].

    Google Scholar 

  70. F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions, J. Phys. Conf. Ser. 46, 122 (2006) [arXiv: hep-lat/0608003].

    Google Scholar 

  71. J.B. Kogut, Chiral Symmetry Restoration in Baryon Rich Environments, Nucl. Phys. B 225, 93 (1983).

    Google Scholar 

  72. M.G. Alford, K. Rajagopal, F. Wilczek, Color-flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537, 443 (1999) [arXiv: hep-ph/9804403].

    Google Scholar 

  73. R. Rapp, T. Schafer, E.V. Shuryak, M. Velkovsky, Diquark Bose condensates in high density matter and instantons, Phys. Rev. Lett. 81, 53 (1998) [arXiv: hep-ph/9711396].

    Google Scholar 

  74. M. Golterman, Y. Shamir, B. Svetitsky, Breakdown of staggered fermions at nonzero chemical potential, Phys. Rev. D 74, 071501 (2006) [arXiv: hep-lat/0602026].

    Google Scholar 

  75. O. Philipsen, The QCD phase diagram at zero and small baryon density, PoS LAT2005, 016 (2006) [arXiv: hep-lat/0510077].

  76. S. Ejiri, Recent progress in lattice QCD at finite density, PoS LAT2008, 002 (2008).

  77. A.M. Ferrenberg, R.H. Swendsen, New Monte Carlo Technique for Studying Phase Transitions, Phys. Rev. Lett. 61, 2635 (1988).

    Google Scholar 

  78. A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo analysis, Phys. Rev. Lett. 63, 1195 (1989).

    Google Scholar 

  79. D. Toussaint, Simulating QCD at finite density, Nucl. Phys. Proc. Suppl. 17, 248 (1990).

    Google Scholar 

  80. Z. Fodor, S.D. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534, 87 (2002) [arXiv: hep-lat/0104001].

    Google Scholar 

  81. Z. Fodor, S.D. Katz, Critical point of QCD at finite T and $\mu$, lattice results for physical quark masses, JHEP 04, 050 (2004) [arXiv: hep-lat/0402006].

  82. Z. Fodor, S.D. Katz, Lattice determination of the critical point of QCD at finite T and $\mu$, JHEP 03, 014 (2002) [arXiv: hep-lat/0106002].

  83. J.B. Kogut, D.K. Sinclair, Lattice QCD at finite isospin density at zero and finite temperature, Phys. Rev. D 66, 034505 (2002) [arXiv: hep-lat/0202028].

    Google Scholar 

  84. J.B. Kogut, D.K. Sinclair, Lattice QCD at finite temperature and density in the phase-quenched approximation, Phys. Rev. D 77, 114503 (2008) [arXiv: 0712.2625].

    Google Scholar 

  85. P. de Forcrand, M.A. Stephanov, U. Wenger, On the phase diagram of QCD at finite isospin density, PoS LAT2007, 237 (2007) [arXiv: hep-lat/0711.0023].

  86. I.M. Barbour, S.E. Morrison, E.G. Klepfish, J.B. Kogut, M.-P. Lombardo, Results on finite density QCD, Nucl. Phys. B Proc. Suppl. 60, 220 (1998) [arXiv: hep-lat/ 9705042].

    Google Scholar 

  87. J. Engels, O. Kaczmarek, F. Karsch, E. Laermann, The quenched limit of lattice QCD at non-zero baryon number, Nucl. Phys. B 558, 307 (1999) [arXiv: hep-lat/9903030].

    Google Scholar 

  88. P. de Forcrand, S. Kratochvila, Finite density QCD with a canonical approach, Nucl. Phys. Proc. Suppl. 153, 62 (2006) [arXiv: hep-lat/0602024].

    Google Scholar 

  89. A. Alexandru, M. Faber, I. Horvath, K.-F. Liu, Lattice QCD at finite density via a new canonical approach, Phys. Rev. D 72, 114513 (2005) [arXiv: hep-lat/0507020].

    Google Scholar 

  90. X.-f. Meng, A. Li, A. Alexandru, K.-F. Liu, Winding number expansion for the canonical approach to finite density simulations, PoS LATTICE2008, 032 (2008) [arXiv: 0811.2112].

  91. A. Li, X. Meng, A. Alexandru, K.-F. Liu, Finite Density Simulations with Canonical Ensemble, PoS LATTICE2008, 178 (2008) [arXiv: 0810.2349].

  92. P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642, 290 (2002) [arXiv: hep-lat/0205016].

    Google Scholar 

  93. M. D’Elia, M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67, 014505 (2003) [arXiv: hep-lat/0209146].

  94. C.R. Allton, The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66, 074507 (2002) [arXiv: hep-lat/0204010].

    Google Scholar 

  95. R.V. Gavai, S. Gupta, Pressure and non-linear susceptibilities in QCD at finite chemical potentials, Phys. Rev. D 68, 034506 (2003) [arXiv: hep-lat/0303013].

    Google Scholar 

  96. R.V. Gavai, S. Gupta, The critical end point of QCD, Phys. Rev. D 71, 114014 (2005) [arXiv: hep-lat/0412035].

  97. R.V. Gavai, S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78, 114503 (2008) [arXiv: 0806.2233].

  98. Z. Fodor, S.D. Katz, C. Schmidt, The density of states method at non-zero chemical potential, JHEP 03, 121 (2007) [arXiv: hep-lat/0701022].

  99. S. Ejiri, On the existence of the critical point in finite density lattice QCD, Phys. Rev. D 77, 014508 (2008) [arXiv: 0706.3549].

  100. G. Aarts, I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09, 018 (2008) [arXiv: 0807.1597].

  101. G. Parisi, Y.-s. Wu, Perturbation Theory Without Gauge Fixing, Sci. Sin. 24, 483 (1981).

    Google Scholar 

  102. G. Parisi, On complex probabilities, Phys. Lett. B 131, 393 (1983).

    Google Scholar 

  103. P.H. Damgaard, H. Hüffel, Stochastic Quantization, Phys. Rep. 152, 227 (1987).

    Google Scholar 

  104. G. Aarts, Can stochastic quantization evade the sign problem? -- the relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102, 131601 (2009) [arXiv: 0810.2089].

    Google Scholar 

  105. G. Aarts, Complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas, JHEP 05, 052 (2009) [arXiv: 0902.4686].

  106. P. de Forcrand, S. Kim, O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS LAT2007, 178 (2007) [arXiv: 0711.0262].

  107. P. de Forcrand, O. Philipsen, The curvature of the critical surface $(m_{ud},m_s)^{crit}(\mu)$: a progress report, PoS LATTICE2008, 208 (2008) [arXiv: 0811.3858].

  108. P. de Forcrand, O. Philipsen, The chiral critical point of $N_f$ = 3 QCD at finite density to the order $(\mu/T)^4$, JHEP 11, 012 (2008) [arXiv: 0808.1096].

  109. P. Petreczky, Quark Matter 2009: Finite temperature lattice QCD: Present status.

  110. M. Laine, Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73, 085009 (2006) [arXiv: hep-ph/0603048].

  111. J. Engels, J. Fingberg, F. Karsch, D. Miller, M. Weber, Nonperturbative thermodynamics of SU(N) gauge theories, Phys. Lett. B 252, 625 (1990).

    Google Scholar 

  112. CP-PACS Collaboration (A. Ali Khan), Equation of state in finite-temperature QCD with two flavors of improved Wilson quarks, Phys. Rev. D 64, 074510 (2001) [arXiv: hep-lat/0103028].

  113. T. Umeda, Fixed Scale Approach to Equation of State in Lattice QCD, Phys. Rev. D 79, 051501 (2009) [arXiv: 0809.2842].

    Google Scholar 

  114. L. Levkova, T. Manke, R. Mawhinney, Two-flavor QCD thermodynamics using anisotropic lattices, Phys. Rev. D 73, 074504 (2006) [arXiv: hep-lat/0603031].

    Google Scholar 

  115. T. Umeda, Thermodynamics of SU(3) gauge theory at fixed lattice spacing, PoS LAT2008, 174 (2008).

  116. G. Endrödi, Z. Fodor, S.D. Katz, K.K. Szabó, The equation of state at high temperatures from lattice QCD, PoS LAT2007, 228 (2007) [arXiv: 0710.4197].

  117. E. Braaten, A. Nieto, Free Energy of QCD at High Temperature, Phys. Rev. D 53, 3421 (1996) [arXiv: hep-ph/9510408].

  118. K. Kajantie, M. Laine, K. Rummukainen, Y. Schröder, The pressure of hot QCD up to $g^6$ ln(1/g), Phys. Rev. D 67, 105008 (2003) [arXiv: hep-ph/0211321].

    Google Scholar 

  119. G. Boyd, Thermodynamics of SU(3) Lattice Gauge Theory, Nucl. Phys. B 469, 419 (1996) [arXiv: hep-lat/9602007].

  120. MILC Collaboration (C. Bernard), QCD thermodynamics with 2+1 flavors at nonzero chemical potential, Phys. Rev. D 77, 014503 (2008) [arXiv: 0710.1330].

  121. MILC Collaboration (S. Basak), QCD equation of state at non-zero chemical potential, PoS LAT2008, 171 (2008).

  122. P.H. Ginsparg, First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature, Nucl. Phys. B 170, 388 (1980).

    Google Scholar 

  123. T. Appelquist, R.D. Pisarski, High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics, Phys. Rev. D 23, 2305 (1981).

    Google Scholar 

  124. M. Cheng, The Spatial String Tension and Dimensional Reduction in QCD, Phys. Rev. D 78, 034506 (2008) [arXiv: 0806.3264].

  125. C.E. DeTar, A Conjecture Concerning the Modes of Excitation of the Quark-Gluon Plasma, Phys. Rev. D 32, 276 (1985).

    Google Scholar 

  126. M. Cheng, The QCD Equation of State with almost Physical Quark Masses, Phys. Rev. D 77, 014511 (2008) [arXiv: 0710.0354].

    Google Scholar 

  127. E. Laermann, Recent results on screening masses, PoS LAT2008, 193 (2008).

  128. M. Asakawa, T. Hatsuda, $J/\psi$ and $\eta_c$ in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92, 012001 (2004) [arXiv: hep-lat/0308034].

    Google Scholar 

  129. S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69, 094507 (2004) [arXiv: hep-lat/0312037].

    Google Scholar 

  130. T. Matsui, H. Satz, $J/\psi$ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178, 416 (1986).

    Google Scholar 

  131. O. Jahn, O. Philipsen, The Polyakov loop and its relation to static quark potentials and free energies, Phys. Rev. D 70, 074504 (2004) [arXiv: hep-lat/0407042].

    Google Scholar 

  132. A. Mocsy, P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77, 014501 (2008) [arXiv: 0705.2559].

  133. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, Real-time static potential in hot QCD, JHEP 03, 054 (2007) [arXiv: hep-ph/0611300].

  134. M.A. Escobedo, J. Soto, Non-relativistic bound states at finite temperature (I): the hydrogen atom, Phys. Rev. A 78, 032520 (2009) [arXiv: 0804.0691].

    Google Scholar 

  135. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78, 014017 (2008) [arXiv: 0804.0993].

    Google Scholar 

  136. T. Umeda, K. Nomura, H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39, s1, 9 (2005) [arXiv: hep-lat/0211003].

  137. M. Jarrell, J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269, 133 (1996).

    Google Scholar 

  138. Y. Nakahara, M. Asakawa, T. Hatsuda, Hadronic spectral functions in lattice QCD, Phys. Rev. D 60, 091503 (1999) [arXiv: hep-lat/9905034].

  139. M. Asakawa, T. Hatsuda, Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46, 459 (2001) [arXiv: hep-lat/0011040].

    Google Scholar 

  140. G. Aarts, C. Allton, M.B. Oktay, M. Peardon, J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76, 094513 (2007) [arXiv: 0705.2198].

    Google Scholar 

  141. H.T. Ding, O. Kaczmarek, F. Karsch, H. Satz, Charmonium correlators and spectral functions at finite temperature, PoS (Confinement8), 108 (2008) [arXiv: 0901.3023].

  142. F. Karsch, H.W. Wyld, Thermal Green’s functions and transport coefficients on the lattice, Phys. Rev. D 35, 2518 (1987).

    Google Scholar 

  143. G. Burgers, F. Karsch, A. Nakamura, I.O. Stamatescu, QCD on anisotropic lattices, Nucl. Phys. B 304, 587 (1988).

    Google Scholar 

  144. G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99, 022002 (2007) [arXiv: hep-lat/0703008].

    Google Scholar 

  145. H.B. Meyer, Energy-momentum tensor correlators and spectral functions, JHEP 08, 031 (2008) [arXiv: 0806.3914].

  146. H. Meyer, Energy-momentum tensor correlators and viscosity, PoS LAT2008, 017 (2008).

  147. H.B. Meyer, A calculation of the bulk viscosity in SU(3) gluodynamics, Phys. Rev. Lett. 100, 162001 (2008) [arXiv: 0710.3717].

  148. H.B. Meyer, A calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76, 101701 (2007) [arXiv: 0704.1801].

  149. E. Braaten, R.D. Pisarski, T.-C. Yuan, Production of soft dileptons in the quark - gluon plasma, Phys. Rev. Lett. 64, 2242 (1990).

    Google Scholar 

  150. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, A lattice calculation of thermal dilepton rates, Phys. Lett. B 530, 147 (2002) [arXiv: hep-lat/0110208].

    Google Scholar 

  151. S. Gupta, The electrical conductivity and soft photon emissivity of the QCD plasma, Phys. Lett. B 597, 57 (2004) [arXiv: hep-lat/0301006].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. DeTar.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeTar, C.E., Heller, U.M. QCD thermodynamics from the lattice. Eur. Phys. J. A 41, 405–437 (2009). https://doi.org/10.1140/epja/i2009-10825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10825-3

PACS

Navigation