Skip to main content
Log in

|Vud| from T = 1/2 mirror transitions and the role of atom and ion traps

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Precision correlation measurements in nuclear beta decay using atom and ion traps have made significant progress since the last ENAM2004 Conference. We review here the achievements and plans of different projects and discuss for each of them their potential to contribute to the determination of the Vud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. This matrix element has traditionally been determined from the analysis of data in nuclear superallowed 0+ \( \rightarrow\) 0+ transitions, neutron decay and pion beta decay but can also independently be determined from data in nuclear mirror transitions. This requires the measurement of correlation parameters in such decays to determine the Gamow-Teller to Fermi mixing ratio which, in most cases, dominates the error on the extracted value of | V ud| .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Sprouse, L.A. Orozco, Annu. Rev. Nucl. Part. Sci. 47, 429 (1997).

    Article  ADS  Google Scholar 

  2. G. Bollen, Eur. Phys. J. A 15, 237 (2002) and references therein.

    Article  ADS  Google Scholar 

  3. Z.-T. Lu et al., Phys. Rev. Lett. 72, 3791 (1994).

    Article  ADS  Google Scholar 

  4. G. Gwinner et al., Phys. Rev. Lett. 72, 3795 (1994).

    Article  ADS  Google Scholar 

  5. J.A. Behr et al., Phys. Rev. Lett. 79, 375 (1997).

    Article  ADS  Google Scholar 

  6. R. Guckert et al., Phys. Rev. A 58, R1637 (1998).

    Article  ADS  Google Scholar 

  7. S.G. Crane et al., Phys. Rev. Lett. 86, 2967 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  8. N.D. Scielzo, S.J. Freedman, B.K. Fujikawa, P.A. Vetter, Phys. Rev. Lett. 93, 102501 (2004).

    Article  ADS  Google Scholar 

  9. A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005).

    Article  ADS  Google Scholar 

  10. P.A. Vetter, J.R. Abo-Shaeer, S.J. Freedman, R. Maruyama, Phys. Rev. C 77, 035502 (2008).

    Article  ADS  Google Scholar 

  11. N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006).

    Article  ADS  Google Scholar 

  12. C.J. Gross et al. (Editors), Proceedings of the 4th International Conference on Exotic Nuclei and Atomic Masses, Eur. Phys. J. A 25, s01 (2005).

  13. O. Naviliat-Cuncic, N. Severijns, Phys. Rev. Lett. 102,142302 (2009).

    Article  ADS  Google Scholar 

  14. I.S. Towner, J.C. Hardy, arXiv:nucl-th/9809087v1, in Proceedings of the 5th International WEIN Symposium Physics Beyond the Standard Model, edited by P. Herczeg, C.M. Hoffman, H.V. Klapdor (World Scientific, Singapore, 1999).

    Google Scholar 

  15. I.S. Towner, J.C. Hardy, J. Phys. G: Nucl. Part. Phys. 29,197 (2003).

    Article  ADS  Google Scholar 

  16. J.C. Hardy, arXiv:hep-ph/0703165v1.

  17. J.C. Hardy, I.S. Towner, Phys. Rev. C 71, 055501 (2005).

    Article  ADS  Google Scholar 

  18. I.S. Towner, J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

    Article  ADS  Google Scholar 

  19. J.C. Hardy, I.S. Towner, arXiv:nucl-ex/0812.1202v1.

  20. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).

    Article  ADS  Google Scholar 

  21. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667,1 (2008).

    Article  ADS  Google Scholar 

  22. H. Abele et al., Phys. Rev. Lett. 88, 211801 (2002).

    Article  ADS  Google Scholar 

  23. H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) and references therein.

    Article  ADS  Google Scholar 

  24. See contributions to Proceedings of the International Workshop on Particle Physics with Slow Neutrons, Grenoble, May 2008, to be published in Nucl. Instrum. Methods: Phys. Res. A.

  25. D. Pocanic et al., Phys. Rev. Lett. 93, 181803 (2004).

    Article  ADS  Google Scholar 

  26. N. Severijns, M. Tandecki, T. Phalet, I.S. Towner, Phys. Rev. C. 78, 055501 (2008).

    Article  ADS  Google Scholar 

  27. I. Towner, private communication, 2008.

  28. D. Melconian et al., Phys. Lett. B 649, 370 (2007).

    Article  ADS  Google Scholar 

  29. J.R.A. Pitcairn et al., arXiv:nucl-ex/0811.0052v1.

  30. H. Wilschut, private communication, 2008.

  31. D. Rodríguez et al., Nucl. Instrum. Methods: Phys. Res. A 565, 876 (2006).

    Article  ADS  Google Scholar 

  32. M. Beck et al., Nucl. Instrum. Methods: Phys. Res. A 503,567 (2003).

    Article  ADS  Google Scholar 

  33. X. Fléchard et al., Phys. Rev. Lett. 101, 212504 (2008).

    Article  ADS  Google Scholar 

  34. V. Kozlov et al., Nucl. Instrum. Methods: Phys. Res. B 266, 4515 (2008); to be published.

    Article  ADS  Google Scholar 

  35. I. Kraev et al., Nucl. Instrum. Methods: Phys. Res. A 555,420 (2005).

    Article  ADS  Google Scholar 

  36. I. Kraev, PhD Thesis, Katholieke Universiteit Leuven, 2006.

  37. F. Wauters et al., arXiv:nucl-ex/0901.0081v1.

  38. N. Severijns, J. Wouters, J. Vanhaverbeke, L. Vanneste, Phys. Rev. Lett. 63, 1050 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Naviliat-Cuncic.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naviliat-Cuncic, O., Severijns, N. |Vud| from T = 1/2 mirror transitions and the role of atom and ion traps. Eur. Phys. J. A 42, 327–331 (2009). https://doi.org/10.1140/epja/i2009-10821-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10821-7

Keywords

Navigation