Skip to main content
Log in

In-trap decay of 61Mn and Coulomb excitation of 61Mn/61Fe

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

At ISOL (Isotope Separator On-Line) facilities, which utilize thick primary production targets, beams of neutron-rich iron isotopes are difficult to obtain due to the long extraction time of these isotopes out of the target matrix. At REX-ISOLDE, an exploratory experiment was carried out to investigate the possibility of producing a post-accelerated beam of neutron-rich iron isotopes by the in-trap decay of neutron-rich manganese isotopes, which are available at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). This production mechanism was tested for the first time at REX-ISOLDE with an intense and short-lived beam of 61Mn isotopes. In this work, the proof of principle of this method is demonstrated, although the technical details of the trapping process are currently not well understood and are still under investigation. The first physics results on the Coulomb excitation of 61Mn and 61Fe are presented and compared to shell model calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999).

    Article  ADS  Google Scholar 

  2. E. Caurier et al., Eur. Phys. J. A 15, 145 (2002).

    Article  ADS  Google Scholar 

  3. V.N. Fedoseyev et al., Nucl. Instrum. Methods B 126, 88 (1997).

    Article  ADS  Google Scholar 

  4. U. Köster et al., Spectrochim. Acta. B 58, 1047 (2003).

    Article  ADS  Google Scholar 

  5. F. Ames et al., Nucl. Instrum. Methods A 538, 17 (2005).

    Article  ADS  Google Scholar 

  6. F. Wenander et al., Nucl. Phys. A 701, 528 (2002).

    Article  ADS  Google Scholar 

  7. O. Kester et al., Nucl. Instrum. Methods B 204, 20 (2003).

    Article  ADS  Google Scholar 

  8. A. Herlert et al., to be published in Eur. Phys. J. A.

  9. J.J. Valiente-Dobón et al., Phys.Rev.C 78, 024302 (2008).

    Article  ADS  Google Scholar 

  10. S. Lunardi et al., Phys. Rev. C 76, 034303 (2007).

    Article  ADS  Google Scholar 

  11. E. Runte et al., Nucl. Phys. A 441, 237 (1985).

    Article  ADS  Google Scholar 

  12. D. Cline et al., Annu. Rev. Nucl. Part. Sci. 36, 683 (1986).

    Article  ADS  Google Scholar 

  13. I.M. Band et al., At. Data Nucl. Data Tables 81, 1 (2002).

    Article  ADS  Google Scholar 

  14. http://www.nndc.bnl.gov/nndc/nudat/.

  15. E. Caurier et al., Acta Phys. Pol. B 30, 705 (1999).

    ADS  Google Scholar 

  16. M. Honma et al., Eur. Phys. J. A 23, 499 (2005).

    Article  Google Scholar 

  17. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).

    Article  ADS  Google Scholar 

  18. M. Honma et al., Phys. Rev. C 69, 034335 (2004).

    Article  ADS  Google Scholar 

  19. M.R. Bhat, Nucl. Data Sheets 88, 417 (1999).

    Article  ADS  Google Scholar 

  20. I. Matea et al., Phys. Rev. Lett. 93, 142503 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Van de Walle.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Walle, J., Bildstein, V., Bree, N. et al. In-trap decay of 61Mn and Coulomb excitation of 61Mn/61Fe. Eur. Phys. J. A 42, 401–406 (2009). https://doi.org/10.1140/epja/i2009-10814-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10814-6

Keywords

Navigation