Skip to main content
Log in

Non-extensive statistical effects in high-energy collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Following the basic prescriptions of the relativistic Tsallis’ non-extensive thermostatistics, we investigate from a phenomenological point of view the relevance of non-extensive statistical effects on relativistic heavy-ion collisions observables, such as rapidity spectra of the net proton production, transverse momentum distributions and transverse momentum fluctuations. Moreover, we study the nuclear and the subnuclear equation of state, investigating the critical densities of a phase transition to a hadron-quark-gluon mixed phase by requiring the Gibbs conditions on the global conservation of the electric and the baryon charges. The relevance of small deviations from the standard extensive statistics is studied in the context of intermediate- and high-energy heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Hwa, X.N. Wang, Quark Gluon Plasma 3 (World Scientific, 2004).

  2. T.S. Biró, J. Phys. G: Nucl. Part. Phys. 35, 044056 (2008).

    Google Scholar 

  3. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Google Scholar 

  4. W.M. Alberico, A. Lavagno, P. Quarati, Eur. Phys. J. C 12, 499 (2000)

    Google Scholar 

  5. A. Peshier, W. Cassing, Phys. Rev. Lett. 94, 172301 (2005).

    Google Scholar 

  6. M.H. Thoma, J. Phys. G 31, L7 (2005).

  7. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Google Scholar 

  8. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998).

    Google Scholar 

  9. M. Gell-Mann, C. Tsallis (Editors), Non-extensive Entropy: Interdisciplinary Applications (Oxford University Press, 2004).

  10. G. Wilk, Z. Włodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Google Scholar 

  11. G. Kaniadakis, A. Lavagno, P. Quarati, Phys. Lett. B 369, 308 (1996)

    Google Scholar 

  12. D.B. Walton, J. Rafelski, Phys. Rev. Lett. 84, 31 (2000).

    Google Scholar 

  13. I. Bediaga, E.M.F. Curado, J.M. de Miranda, Physica A 286, 156 (2000).

    Google Scholar 

  14. C. Beck, Physica A 286, 164 (2000)

  15. T.S. Biró, G. Purcsel, Phys. Rev. Lett. 95, 162302 (2005).

    Google Scholar 

  16. T.S. Biró, B. Müller, Phys. Lett. B 578, 78 (2004)

    Google Scholar 

  17. T.S. Biró, G. Purcsel, Phys. Lett. A 372, 1174 (2008).

    Google Scholar 

  18. N. Biyajima, M. Kaneyama, T. Mizoguchi, G. Wilk, Eur. Phys. J. C 40, 243 (2005)

    Google Scholar 

  19. T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008).

    Google Scholar 

  20. A. Lavagno, Physica A 305, 238 (2002).

  21. A. Lavagno, Phys. Lett. A 301, 13 (2002).

    Google Scholar 

  22. S.R. Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980).

  23. See, for example, C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 68, 014507 (2003).

  24. U. Tirnakli, F. Büyükkiliç, D. Demirhan, Phys. Lett. A 245, 62 (1998).

    Google Scholar 

  25. BRAHMS Collaboration (I.G. Bearden), Phys. Rev. Lett. 93, 102301 (2004).

    Google Scholar 

  26. NA49 Collaboration (H. Appelshäuser), Phys. Rev. Lett. 82, 2471 (1999).

  27. E802 Collaboration (L. Ahle), Phys. Rev. C 60, 064901 (1999)

  28. M. Biyajima, Prog. Theor. Phys. Suppl. 153, 344 (2004).

    Google Scholar 

  29. T. Csörgö, S. Hegyi, W.A. Zajc, Eur. Phys. J. C 36, 67 (2004).

    Google Scholar 

  30. G. Wolschin, Phys. Rev. C 69, 024906 (2004)

    Google Scholar 

  31. R. Kuiper, G. Wolschin, Ann. Phys. (Leipzig) 16, 67 (2007).

    Google Scholar 

  32. G. Wolschin, M. Biyajima, T. Mizoguchi, Eur. Phys. J. A 36, 111 (2008)

    Google Scholar 

  33. W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi, V. Somá, Physica A 387, 467 (2008).

    Google Scholar 

  34. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996).

  35. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).

    Google Scholar 

  36. E.K. Lenzi, R.S. Mendes, C. Tsallis, Phys. Rev. E 67, 031104 (2003).

    Google Scholar 

  37. T. Csörgö, M. Csanád, M. Nagy, Braz. J. Phys. 37, issue no. 3A, 1002 (2007).

  38. NA44 Collaboration (I.G. Bearden), Phys. Rev. Lett. 78, 2080 (1997).

  39. WA98 Collaboration (M.M. Aggarwal), Eur. Phys. J. C 23, 225 (2002).

  40. PHENIX Collaboration (S.S. Adler), Phys. Rev. Lett. 91, 072301 (2003)

    Google Scholar 

  41. NA35 Collaboration (T. Alber), Eur. Phys. J. C 2, 643 (1998).

  42. M. Gaździcki, St. Mrówczyński, Z. Phys. C 54, 127 (1992).

    Google Scholar 

  43. St. Mrówczyński, Phys. Lett. B 439, 6 (1998).

  44. NA49 Collaboration (A. Appelshäuser), Phys. Lett. B 467, 21 (1999).

  45. O.V. Utyuzh, G. Wilk, Z. Włodarczyk, Phys. Rev. C 64, 027901 (2001).

    Google Scholar 

  46. M. Rybczyński, Z. Włodarczyk, G. Wilk, Acta Phys. Pol. B 35, 819 (2004).

    Google Scholar 

  47. H. Stoecker, Nucl. Phys. A 750, 121 (2005)

    Google Scholar 

  48. L. Bonanno, A. Drago, A. Lavagno, Phys. Rev. Lett. 99, 242301 (2007).

    Google Scholar 

  49. V.N. Russkikh, Y.B. Ivanov, Phys. Rev. C 74, 034904 (2006).

    Google Scholar 

  50. M. Di Toro, A. Drago, T. Gaitanos, V. Greco, A. Lavagno, Nucl. Phys. A 775, 102 (2006)

    Google Scholar 

  51. A. Drago, A. Lavagno, P. Quarati, Physica A 344, 472 (2004).

    Google Scholar 

  52. F.I.M. Pereira, R. Silva, J.S. Alcaniz, Phys. Rev. C 76, 015201 (2007).

    Google Scholar 

  53. P. Senger, J. Phys. G 30, S1087 (2004).

  54. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991).

    Google Scholar 

  55. GSI, Scientific Report 2007 and GSI Proposal for an International Accelerator Facility for Research with Ions and Antiprotons.

  56. A. Chodos, Phys. Rev. D 9, 3471 (1974).

    Google Scholar 

  57. G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005).

    Google Scholar 

  58. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006).

    Google Scholar 

  59. A. Teweldeberhan, H.G. Miller, R. Tegen, Int. J. Mod. Phys. E 12, 395 (2003).

    Google Scholar 

  60. N.K. Glendenning, Phys. Rev. D 46, 1274 (1992).

    Google Scholar 

  61. H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lavagno.

Additional information

Communicated by U.-G. Meißner

This paper is part of the Topical Issue Statistical Power Law Tails in High-Energy Phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberico, W.M., Lavagno, A. Non-extensive statistical effects in high-energy collisions. Eur. Phys. J. A 40, 313 (2009). https://doi.org/10.1140/epja/i2009-10809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2009-10809-3

PACS

Navigation