Skip to main content
Log in

Comparison between different computational schemes for variational calculations in nuclear structure

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We compare several iteration methods for angular-momentum- and parity-projected Hartree-Fock calculations. We used the Anderson update, the modified Broyden method, newly introduced in nuclear-structure calculations, and variants of the Broyden-Fletcher-Goldhaber-Shanno methods (BFGS). We performed ground-state calculations for 18C and 6Li using the two-body Hamiltonian obtained from the CDBonn-2000 potential via the Lee-Suzuki renormalization method. We found that BFGS methods are superior to both the Anderson update and to the modified Broyden method. In the case of 6Li we found that the Anderson update and modified Broyden method do not converge to the angular-momentum- and parity-projected Hartree-Fock minimum. The reason is traced back to the lack of a mechanism that guarantees a decrease of the energy from one iteration to the next and to the fact that these methods guarantee a stationary solution rather than a minimum of the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980).

  2. K.T.R. Davies, H. Flocard, S. Krieger, M.S. Weiss, Nucl. Phys. A 342, 111 (1980).

    Google Scholar 

  3. W. Lederman (Editor), Handbook of Applicable Mathematics, Vol. III: Numerical Methods (John Wiley and Sons, New York, 1981) Chapt. 11.

  4. K.W. Schmid, F. Grummer, Amand Faessler, Ann. Phys. (N.Y.) 180, 1 (1987)

    Google Scholar 

  5. D. Vanderbilt, S.G. Louie, Phys. Rev. B 30, 6118 (1984)

    Google Scholar 

  6. V. Eyert, J. Comput. Phys. 124, 271 (1996).

    Google Scholar 

  7. A. Baran, A. Bulgac, M.M. Forbes, G. Hagen, W. Nazarewicz, N. Schunck, M. Stoitsov, Phys. Rev. C 78, 014318 (2008).

    Google Scholar 

  8. G. Puddu, J. Phys. G: Nucl. Part. Phys. 32, 321 (2006).

    Google Scholar 

  9. G. Puddu, Acta Phys. Pol. B 38, 3237 (2007).

    Google Scholar 

  10. D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965).

  11. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Google Scholar 

  12. K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980)

  13. P. Navratil, J.P. Vary, B.R. Barrett, Phys. Rev. C 62, 054311 (2000).

    Google Scholar 

  14. G. Puddu, Eur. Phys. J. A 31, 163 (2007).

    Google Scholar 

  15. L.C.W. Dixon, J. Opt. Theory Appl. 10, 34 (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Puddu.

Additional information

G. Orlandini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puddu, G. Comparison between different computational schemes for variational calculations in nuclear structure. Eur. Phys. J. A 39, 335–340 (2009). https://doi.org/10.1140/epja/i2008-10725-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10725-0

PACS

Navigation