Advertisement

Q-value for the Fermi beta-decay of 46V

  • T. FaestermannEmail author
  • R. Hertenberger
  • H. -F. Wirth
  • R. Krücken
  • M. Mahgoub
  • P. Maier-Komor
Regular Article - Experimental Physics

Abstract

By comparing the Q -values for the 46Ti ( 3He , t 46V and 47Ti ( 3He , t 47V reactions to the isobaric analogue states the Q -value for the superallowed Fermi decay of 46V has been determined as Q EC( ^46V ) = (7052.11±0.27) keV. The result is compatible with the values from two recent direct mass measurements but is at variance with the previously most precise reaction Q -value. As additional input quantity we have determined the neutron separation energy S n( ^47Ti ) = (8880.51±0.25) keV.

Keywords

Neutron Separation Energy Isobaric Analogue State Cathode Strip 49Ti Reaction Direct Mass Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. Towner, J.C. Hardy, Phys. Rev. C 77, 025501 (2008).CrossRefADSGoogle Scholar
  2. 2.
    C. Amsler et al., Phys. Lett. B 667, 1 (2008).CrossRefADSGoogle Scholar
  3. 3.
    T. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008).CrossRefADSGoogle Scholar
  4. 4.
    J.C. Hardy, I. Towner, Phys. Rev. C 71, 055501 (2005).CrossRefADSGoogle Scholar
  5. 5.
    G. Savard et al., Phys. Rev. Lett. 95, 102501 (2005).CrossRefADSGoogle Scholar
  6. 6.
    T. Eronen et al., Phys. Rev. Lett. 96, 132502 (2006).Google Scholar
  7. 7.
    H. Vonach et al., Nucl. Phys. A 278, 189 (1977).CrossRefADSGoogle Scholar
  8. 8.
    J.C. Hardy, I. Towner, G. Savard, Int. J. Mass Spectrom. 251, 95 (2006).CrossRefADSGoogle Scholar
  9. 9.
    M. Löffler, H.J. Scherer, H. Vonach, Nucl. Instrum. Methods A 111, 1 (1973).CrossRefGoogle Scholar
  10. 10.
    R. Hertenberger et al., Nucl. Instrum. Methods A 536, 266 (2005).CrossRefADSGoogle Scholar
  11. 11.
    H.-F. Wirth et al., Munich Accelerator Lab., Annual Report (2000) 71.Google Scholar
  12. 12.
    F.D. Becchetti, D. Dehnhard, T.G. Dzubay, Nucl. Phys. A 168, 151 (1971).CrossRefADSGoogle Scholar
  13. 13.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  14. 14.
    T.W. Burrows, Nucl. Data Sheets 74, 1 (1995).CrossRefADSGoogle Scholar
  15. 15.
    R.B. Firestone, S.F. Mughabghab, G.L. Molnar, in Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA Report 1263, 45 (2007).Google Scholar
  16. 16.
    H.P.L. Esch, C. van der Leun, Nucl. Phys. A 454, 1 (1984).CrossRefGoogle Scholar
  17. 17.
    G.T.A. Squier et al., Phys. Lett. B 65, 122 (1976) with adjustment by ref. [4].CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. Faestermann
    • 1
    • 2
    Email author
  • R. Hertenberger
    • 2
    • 3
  • H. -F. Wirth
    • 2
    • 3
  • R. Krücken
    • 1
    • 2
  • M. Mahgoub
    • 1
    • 2
  • P. Maier-Komor
    • 1
    • 2
  1. 1.Physik Department E12Technische Universität MünchenGarchingGermany
  2. 2.Maier-Leibnitz-Laboratorium der Münchner Universitäten (MLL)GarchingGermany
  3. 3.Fakultät für PhysikLudwig-Maximilians-Universität MünchenGarchingGermany

Personalised recommendations