Skip to main content

Advertisement

Log in

Density matrix expansion for low-momentum interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A first step toward a universal nuclear energy density functional based on low-momentum interactions is taken using the density matrix expansion (DME) of Negele and Vautherin. The DME is adapted for non-local momentum space potentials and generalized to include local three-body interactions. Different prescriptions for the three-body DME are compared. Exploratory results are given at the Hartree-Fock level, along with a roadmap for systematic improvements within an effective action framework for the Kohn-Sham density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Carlson, G. Ortiz (Editors), Recent Progress in Many-body Theories: Proceedings of the 12th International Conference (World Scientific, Singapore, 2006)

  2. M.W. Ahmed, H. Gao, H.R. Weller, B. Holstein (Editors), Chiral Dynamics 2006 (World Scientific, Singapore, 2007).

  3. R.J. Furnstahl, G. Rupak, T. Schäfer, Ann. Phys. Nucl. Part. Sci. 58, 1 (2008) [arXiv:0801.0729].

    Google Scholar 

  4. E. Epelbaum, H.W. Hammer, U.-G. Meißner, arXiv:0811.1338 [nucl-th].

  5. E. Epelbaum, W. Glöckle, U.-G. Meißner, Phys. Lett. B 439, 1 (1998).

    Google Scholar 

  6. S.K. Bogner, T.T.S. Kuo, A. Schwenk, D.R. Entem, R. Machleidt, Phys. Lett. B 576, 265 (2003).

    Google Scholar 

  7. S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003).

    Google Scholar 

  8. S.K. Bogner, A. Schwenk, T.T.S. Kuo, G.E. Brown, arXiv:nucl-th/0111042, unpublished.

  9. A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002(R) (2004).

  10. S.K. Bogner, A. Schwenk, R.J. Furnstahl, A. Nogga, Nucl. Phys. A 763, 59 (2005).

    Google Scholar 

  11. S.K. Bogner, R.J. Furnstahl, S. Ramanan, A. Schwenk, Nucl. Phys. A 773, 203 (2006).

    Google Scholar 

  12. S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75, 061001(R) (2007).

  13. S.K. Bogner, R.J. Furnstahl, R.J. Perry, A. Schwenk, Phys. Lett. B 649, 488 (2007).

    Google Scholar 

  14. S.K. Bogner, R.J. Furnstahl, R.J. Perry, Ann. Phys. (N.Y.) 323, 1478 (2008).

    Google Scholar 

  15. R. Roth, H. Hergert, P. Papakonstantinou, T. Neff, H. Feldmeier, Phys. Rev. C 72, 034002 (2005) and references therein.

  16. R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, H. Feldmeier, Phys. Rev. C 73, 044312 (2006)

    Google Scholar 

  17. G.F. Bertsch, D.J. Dean, W. Nazarewicz, SciDAC Rev. 6, 42 (2007).

    Google Scholar 

  18. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990).

  19. N. Argaman, G. Makov, Am. J. Phys. 68, 69 (2000).

    Google Scholar 

  20. C. Fiolhais, F. Nogueira, M. Marques (Editors), A Primer in Density Functional Theory (Springer, Berlin, 2003).

  21. R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Prog. Theor. Phys. 92, 833 (1994).

    Google Scholar 

  22. M. Valiev, G.W. Fernando, Phys. Lett. A 227, 265 (1997).

    Google Scholar 

  23. M. Valiev, G.W. Fernando, arXiv:cond-mat/9702247 (1997) unpublished.

  24. J. Polonyi, K. Sailer, Phys. Rev. B 66, 155113 (2002).

    Google Scholar 

  25. S.J. Puglia, A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 723, 145 (2003).

    Google Scholar 

  26. A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 747, 268 (2005).

    Google Scholar 

  27. A. Bhattacharyya, R.J. Furnstahl, Phys. Lett. B 607, 259 (2005).

    Google Scholar 

  28. R.J. Furnstahl, J. Phys. G 31, S1357 (2005).

  29. B.D. Day, Rev. Mod. Phys. 39, 719 (1967).

    Google Scholar 

  30. M. Baldo (Editor), Nuclear Methods and the Nuclear Equation of State (World Scientific, Singapore, 1999).

  31. J. Dobaczewski, W. Nazarewicz, P.G. Reinhard, Nucl. Phys. A 693, 361 (2001).

    Google Scholar 

  32. M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D.J. Dean, Phys. Rev. C 68, 054312 (2003) and references therein.

  33. M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Google Scholar 

  34. See http://www.scidacreview.org/0704/html/unedf. html for documentation on a large-scale project to build a universal nuclear energy density functional (UNEDF) with an order-of-magnitude improvement over current phenomenological functionals.

  35. J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972).

    Google Scholar 

  36. J.W. Negele, D. Vautherin, Phys. Rev. C 11, 1031 (1975).

    Google Scholar 

  37. F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998).

    Google Scholar 

  38. A.K. Kerman, J.P. Svenne, F.M.H. Villars, Phys. Rev. 147, 710 (1966).

    Google Scholar 

  39. W.H. Bassichis, A.K. Kerman, J.P. Svenne, Phys. Rev. 160, 746 (1967).

    Google Scholar 

  40. M.R. Strayer, W.H. Bassichis, A.K. Kerman, Phys. Rev. C 8, 1269 (1973).

    Google Scholar 

  41. B. Gebremariam, S.K. Bogner, T. Duguet, in preparation.

  42. R.J. Furnstahl, H.-W. Hammer, S.J. Puglia, Ann. Phys. (N.Y.) 322, 2703 (2007).

    Google Scholar 

  43. T. Duguet, T. Lesinski, Eur. Phys. J. ST 156, 207 (2008).

    Google Scholar 

  44. J. Engel, Phys. Rev. C 75, 014306 (2007).

    Google Scholar 

  45. B.G. Giraud, Phys. Rev. C 77, 014311 (2008).

    Google Scholar 

  46. N. Barnea, Phys. Rev. C 76, 067302 (2007).

    Google Scholar 

  47. N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 724, 47 (2003).

    Google Scholar 

  48. N. Kaiser, Phys. Rev. C 68, 014323 (2003).

    Google Scholar 

  49. S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005).

    Google Scholar 

  50. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 2000).

  51. E. Perlinska, S.G. Rohozinski, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 69, 014316 (2004).

    Google Scholar 

  52. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972).

    Google Scholar 

  53. J. Dobaczewski, J. Dudek, Phys. Rev. C 52, 1827 (1995), and references therein.

  54. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1988).

  55. W. Kutzelnigg, J. Mol. Struct. 768, 163 (2006).

    Google Scholar 

  56. R. Rajaraman, H.A. Bethe, Rev. Mod. Phys. 39, 745 (1967).

    Google Scholar 

  57. M. Rasamny, M.M. Valiev, G.W. Fernando, Phys. Rev. B 58, 9700 (1998).

    Google Scholar 

  58. W. Kohn, J.M. Luttinger, Phys. Rev. 118, 41 (1960).

    Google Scholar 

  59. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960).

    Google Scholar 

  60. R.J. Bartlett, V.F. Lotrich, I.V. Schweigert, J. Chem. Phys. 123, 062205 (2005).

    Google Scholar 

  61. A. Görling, J. Chem. Phys. 123, 062203 (2005).

    Google Scholar 

  62. E.J. Baerends, O.V. Gritsenko, J. Chem. Phys. 123, 062202 (2005).

    Google Scholar 

  63. X. Campi, A. Bouyssy, Phys. Lett. B 73, 263 (1978).

    Google Scholar 

  64. E.D. Jurgenson, R.J. Furnstahl, arXiv:0809.4199.

  65. U. van Kolck, Phys. Rev. C 49, 2932 (1999).

    Google Scholar 

  66. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witala, Phys. Rev. C 66, 064001 (2002).

    Google Scholar 

  67. W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, Berlin, 1983).

  68. P. Buettiker, U.G. Meissner, Nucl. Phys. A 668, 97 (2000).

    Google Scholar 

  69. M.C.M. Rentmeester, R.G.E. Timmermans, J.J. de Swart, Phys. Rev. C 67, 044001 (2003).

    Google Scholar 

  70. A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002(R) (2004).

  71. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005).

    Google Scholar 

  72. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

    Google Scholar 

  73. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Google Scholar 

  74. R.J. Furnstahl, J.C. Hackworth, Phys. Rev. C 56, 2875 (1997).

    Google Scholar 

  75. J. Dobaczewski, arXiv:nucl-th/0301069, unpublished.

  76. T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007).

    Google Scholar 

  77. D.M. Brink, Fl. Stancu, Phys. Rev. C 75, 064311 (2007).

    Google Scholar 

  78. V. Rotivale, S.K. Bogner, T. Duguet, R.J. Furnstahl, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Platter.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogner, S.K., Furnstahl, R.J. & Platter, L. Density matrix expansion for low-momentum interactions. Eur. Phys. J. A 39, 219–241 (2009). https://doi.org/10.1140/epja/i2008-10695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10695-1

PACS

Navigation