Skip to main content

Exclusive ρ0 electroproduction on the proton at CLAS

Abstract

The epe pρ0 reaction has been measured using the 5.754GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross-sections are presented. The W , Q2 and t dependences of the cross-section are compared to theoretical calculations based on the t -channel meson-exchange Regge theory, on the one hand, and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \( \approx\) 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high-energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.

This is a preview of subscription content, access via your institution.

References

  1. 1

    T. Regge, Nuovo Cimento 14, 951 (1959)

  2. 2

    P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, 1977).

  3. 3

    J.K. Storrow, Rep. Prog. Phys. 50, 1229 (1987).

    Google Scholar 

  4. 4

    D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Horejsi, Fortschr. Phys. 42, 101 (1994).

    Google Scholar 

  5. 5

    X. Ji, Phys. Rev. Lett. 78, 610 (1997)

    Google Scholar 

  6. 6

    A.V. Radyushkin, Phys. Lett. B 380, 417 (1996)

    Google Scholar 

  7. 7

    J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997).

    Google Scholar 

  8. 8

    K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001).

    Google Scholar 

  9. 9

    M. Diehl, Phys. Rep. 388, 41 (2003).

  10. 10

    A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005).

    Google Scholar 

  11. 11

    J.-M. Laget, Phys. Lett. B 489, 313 (2000).

    Google Scholar 

  12. 12

    F. Cano, J.-M. Laget, Phys. Rev. D 65, 074022 (2002).

    Google Scholar 

  13. 13

    S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 42, 281 (2005)

    Google Scholar 

  14. 14

    M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. Lett. 80, 5064 (1998).

    Google Scholar 

  15. 15

    M. Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999).

    Google Scholar 

  16. 16

    K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001).

    Google Scholar 

  17. 17

    M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).

    Google Scholar 

  18. 18

    P. Joos, Nucl. Phys. B 113, 53 (1976).

    Google Scholar 

  19. 19

    D.G. Cassel, Phys. Rev. D 24, 2787 (1981).

    Google Scholar 

  20. 20

    A. Airapetian, Eur. Phys. J. C 17, 389 (2000).

    Google Scholar 

  21. 21

    C. Hadjidakis, Phys. Lett. B 605, 256 (2005).

    Google Scholar 

  22. 22

    B. Mecking, Nucl. Instrum. Methods A 503, 513 (2003).

    Google Scholar 

  23. 23

    W.-M. Yao, J. Phys. Lett. G 33, 1 (2006).

    Google Scholar 

  24. 24

    M. Battaglieri, R. Devita, M. Ripani, INFN Genova, private communication.

  25. 25

    L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

    Google Scholar 

  26. 26

    L.N. Hand, Phys. Rev. 129, 1834 (1963).

  27. 27

    M. Ripani, Phys. Rev. Lett. 91, 022002 (2003).

    Google Scholar 

  28. 28

    V. Mokeev, Phys. At. Nucl. 64, 1292 (2001).

    Google Scholar 

  29. 29

    T.H. Bauer, R.D. Spital, D.R. Yennie, Rev. Mod. Phys. 50, 261 (1978).

    Google Scholar 

  30. 30

    J.D. Jackson, Nuovo Cimento 34, 1644 (1964).

  31. 31

    M. Ross, L. Stodolsky, Phys. Rev. 149, 1172 (1966).

    Google Scholar 

  32. 32

    P. Söding, Phys. Lett. 19, 702 (1966).

    Google Scholar 

  33. 33

    M.R. Adams, Z. Phys. C 74, 237 (1997).

    Google Scholar 

  34. 34

    S. Chekanov, PMC Phys. A 1, 6 (2007).

  35. 35

    M. Battaglieri, A.P. Szczepaniak, private communication.

  36. 36

    L.A. Ahrens, Phys. Rev. Lett. 42, 208 (1979).

    Google Scholar 

  37. 37

    P. Amaudruz, Z. Phys. C 54, 239 (1992).

    Google Scholar 

  38. 38

    W.R. Francis, Phys. Rev. Lett. 38, 633 (1977).

    Google Scholar 

  39. 39

    C. Adloff, Eur. Phys. J. C 13, 371 (2000).

    Google Scholar 

  40. 40

    K. Schilling, G. Wolf, Nucl. Phys. B 61, 381 (1973).

    Google Scholar 

  41. 41

    A. Ackerstaff, Eur. Phys. J. C 18, 303 (2000).

    Google Scholar 

  42. 42

    J.M. Laget, Phys. Rev. D 70, 054023 (2004).

    Google Scholar 

  43. 43

    F. Cano, J.M. Laget, Phys. Lett. B 551, 317 (2003).

    Google Scholar 

  44. 44

    E. Anciant, Phys. Rev. Lett. 85, 4682 (2000).

    Google Scholar 

  45. 45

    J.P. Santoro, Phys. Rev. C 78, 025210 (2008).

    Google Scholar 

  46. 46

    A.V. Radyushkin, Phys. Rev. D 59, 014030 (1999)

    Google Scholar 

  47. 47

    J. Botts, G. Sterman, Nucl. Phys. B 325, 62 (1989).

    Google Scholar 

  48. 48

    L. Frankfurt, W. Koepf, M. Strikman, Phys. Rev. D 54, 3194 (1996).

    Google Scholar 

  49. 49

    M. Guidal, S. Morrow, Proceeding of the International Workshop Exclusive reactions at high momentum transfer, Jefferson Laboratory, Newport-News, Virginia, USA, May 21-24 2007 (World Scientific, 2008) ISBN 9812796940, arXiv:0711.3743 (hep-ph).

  50. 50

    M. Polyakov, C. Weiss, Phys. Rev. D 60, 114017 (1999).

    Google Scholar 

  51. 51

    D.S. Hwang, D. Müller, Phys. Lett. B 660, 350 (2008).

    Google Scholar 

  52. 52

    M. Diehl, W. Kugler, Phys. Lett. B 660, 202 (2008).

    Google Scholar 

  53. 53

    M. Guidal, Eur. Phys. J. A 37, 319 (2008).

    Google Scholar 

  54. 54

    C. Muñoz Camacho, Phys. Rev. Lett. 97, 262002 (2006).

    Google Scholar 

  55. 55

    F.-X. Girod, Phys. Rev. Lett. 100, 162002 (2008).

    Google Scholar 

  56. 56

    S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367 (2008).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Guidal.

Additional information

N. Bianchi

Rights and permissions

Reprints and Permissions

About this article

Cite this article

The CLAS Collaboration., Morrow, S.A., Guidal, M. et al. Exclusive ρ0 electroproduction on the proton at CLAS. Eur. Phys. J. A 39, 5–31 (2009). https://doi.org/10.1140/epja/i2008-10683-5

Download citation

PACS

  • 13.60.Le Meson production
  • 12.40.Nn Regge theory, duality, absorptive/optical models
  • 12.38.Bx Perturbative calculations