Advertisement

The European Physical Journal A

, Volume 37, Issue 1, pp 87–95 | Cite as

A new form of three-body Faddeev equations in the continuum

  • H. WitałaEmail author
  • W. Glöckle
Regular Article — Theoretical Physics

Abstract

We propose a novel approach to solve the three-nucleon (3N) Faddeev equation which avoids the complicated singularity pattern going with the moving logarithmic singularities of the standard approach. In this new approach the treatment of the 3N Faddeev equation becomes essentially as simple as the treatment of the two-body Lippmann-Schwinger equation. Very good agreement of the new and old approaches in the application to nucleon-deuteron elastic scattering and the breakup reaction is found.

PACS

21.45.-v Few-body systems 24.70.+s Polarization phenomena in reactions 25.10.+s Nuclear reactions involving few-nucleon systems 25.40.Lw Radiative capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961); Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory (Davey, New York, 1965); L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic Publishers, Dordrecht, 1993).MathSciNetGoogle Scholar
  2. 2.
    W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, 1983).Google Scholar
  3. 3.
    E.W. Schmidt, H. Ziegelmann, The Quantum Mechanical Three-Body Problem (Pergamon Press, Oxford, 1974).Google Scholar
  4. 4.
    J. Haidenbauer, Y. Koike, W. Plessas, Phys. Rev. C 33, 439 (1986).CrossRefADSGoogle Scholar
  5. 5.
    W.M. Kloet, J.A. Tjon, Nucl. Phys. A 210, 380 (1973).CrossRefADSGoogle Scholar
  6. 6.
    H. Witała, W. Glöckle, Th. Cornelius, Few-Body Syst., Suppl. 2, 555 (1987).Google Scholar
  7. 7.
    W. Glöckle, G. Hasberg, A.R. Neghabian, Z. Phys. A 305, 217 (1982).CrossRefMathSciNetGoogle Scholar
  8. 8.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).CrossRefADSGoogle Scholar
  9. 9.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).CrossRefADSGoogle Scholar
  10. 10.
    V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).CrossRefADSGoogle Scholar
  11. 11.
    S.A. Coon et al., Nucl. Phys. A 317, 242 (1979); S.A. Coon, W. Glöckle, Phys. Rev. C 23, 1790 (1981).CrossRefADSGoogle Scholar
  12. 12.
    B.S. Pudliner et al., Phys. Rev. C 56, 1720 (1997).CrossRefADSGoogle Scholar
  13. 13.
    W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).CrossRefADSGoogle Scholar
  14. 14.
    C.R. Howell et al., Phys. Rev. Lett. 61, 1565 (1988).CrossRefADSGoogle Scholar
  15. 15.
    M. Stephan et al., Phys. Rev. C 39, 2133 (1989).CrossRefADSGoogle Scholar
  16. 16.
    G. Rauprich et al., Nucl. Phys. A 535, 313 (1991).CrossRefADSGoogle Scholar
  17. 17.
    J.E. McAninch et al., Phys. Lett. B 307, 13 (1993).CrossRefADSGoogle Scholar
  18. 18.
    L. Sydow et al., Nucl. Phys. A 567, 55 (1994).CrossRefADSGoogle Scholar
  19. 19.
    M. Allet et al., Phys. Lett. B 376, 255 (1996).CrossRefADSGoogle Scholar
  20. 20.
    H.R. Setze et al., Phys. Lett. B 388, 229 (1996).CrossRefADSGoogle Scholar
  21. 21.
    H. Rohdjess et al., Phys. Rev. C 57, 2111 (1998).CrossRefADSGoogle Scholar
  22. 22.
    W.P. Abfalterer et al., Phys. Rev. Lett. 81, 57 (1998).CrossRefADSGoogle Scholar
  23. 23.
    H. Sakai et al., Phys. Rev. Lett. 84, 5288 (2000).CrossRefADSGoogle Scholar
  24. 24.
    R. Bieber et al., Phys. Rev. Lett. 84, 606 (2000).CrossRefADSGoogle Scholar
  25. 25.
    R.V. Cadman et al., Phys. Rev. Lett. 86, 967 (2001).CrossRefADSGoogle Scholar
  26. 26.
    K. Ermisch et al., Phys. Rev. Lett. 86, 5862 (2001).CrossRefADSGoogle Scholar
  27. 27.
    K. Hatanaka et al., Phys. Rev. C 66, 044002 (2002).CrossRefADSGoogle Scholar
  28. 28.
    K. Sekiguchi et al., Phys. Rev. C 70, 014001 (2004).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    K. Ermisch et al., Phys. Rev. C 71, 064004 (2005).CrossRefADSGoogle Scholar
  30. 30.
    H.R. Amir-Ahmadi et al., Phys. Rev. C 75, 041001(R) (2007).CrossRefADSGoogle Scholar
  31. 31.
    H. Witała, W. Glöckle, D. Hüber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).CrossRefADSGoogle Scholar
  32. 32.
    H. Witała et al., Phys. Rev. C 63, 024007 (2001).CrossRefADSGoogle Scholar
  33. 33.
    H. Witała, J. Golak, W. Glöckle, H. Kamada, Phys. Rev. C 71, 054001 (2005).CrossRefADSGoogle Scholar
  34. 34.
    K. Sekiguchi et al., Phys. Rev. Lett. 95, 162301 (2005).CrossRefADSGoogle Scholar
  35. 35.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).CrossRefADSGoogle Scholar
  36. 36.
    J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, Phys. Rep. 415, 89 (2005).CrossRefADSGoogle Scholar
  37. 37.
    D. Hüber, H. Kamada, H. Witała, W. Glöckle, Few-Body Syst. 16, 165 (1994).CrossRefADSGoogle Scholar
  38. 38.
    R. Balian, E. Berézin, Nuovo Cimento B 2, 403 (1969).CrossRefADSGoogle Scholar
  39. 39.
    B.D. Keister, W.N. Polyzou, Phys. Rep. C 73, 014005 (2003).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Institut für theoretische Physik IIRuhr-Universität BochumBochumGermany

Personalised recommendations