Advertisement

The European Physical Journal A

, Volume 37, Issue 1, pp 111–119 | Cite as

Interplay among the azimuthally dependent HBT radii and the elliptic flow

Insights from the Buda-Lund hydro model
  • M. CsanádEmail author
  • B. Tomášik
  • T. Csörgő
Regular Article — Theoretical Physics

Abstract

We present a calculation of the elliptic flow and azimuthal dependence of the correlation radii in the ellipsoidally symmetric generalization of the Buda-Lund model. The elliptic flow is shown to depend only on the flow anisotropy while in case of correlation radii both flow and space anisotropy play an important role in determining their azimuthal oscillation. We also outline a simple procedure for determining the parameters of the model from data.

PACS

25.75.-q Relativistic heavy-ion collisions 25.75.Gz Particle correlations and fluctuations 25.75.Ld Collective flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Riordan, W.A. Zajc, Sci. Am. 294, no. 5, 24 (2006).CrossRefGoogle Scholar
  2. 2.
    F. Retiere, M.A. Lisa, Phys. Rev. C 70, 044907 (2004) [arXiv:nucl-th/0312024].CrossRefADSGoogle Scholar
  3. 3.
    E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993) [arXiv:nucl-th/9307020].CrossRefADSGoogle Scholar
  4. 4.
    M. Csanád, T. Csörgő, B. Lörstad, A. Ster, Nukleonika 49, S49 (2004) [arXiv:nucl-th/0402037].Google Scholar
  5. 5.
    T. Csörgő et al., Phys. Rev. C 67, 034904 (2003) [arXiv:hep-ph/0108067].CrossRefADSGoogle Scholar
  6. 6.
    T. Csörgő, F. Grassi, Y. Hama, T. Kodama, Phys. Lett. B 565, 107 (2003) [arXiv:nucl-th/0305059].CrossRefADSGoogle Scholar
  7. 7.
    Y.M. Sinyukov, I.A. Karpenko, Acta Phys. Hung. A 25, 141 (2006) [arXiv:nucl-th/0506002].CrossRefGoogle Scholar
  8. 8.
    T. Csörgő, M.I. Nagy, M. Csanád, Phys. Lett. B 663, 306 (2008) [arXiv:nucl-th/0605070].CrossRefADSGoogle Scholar
  9. 9.
    S. Pratt, S. Pal, Nucl. Phys. A 749, 268 (2005) [arXiv:nuclth/0409038].CrossRefADSGoogle Scholar
  10. 10.
    W. Broniowski, M. Chojnacki, W. Florkowski, A. Kisiel [arXiv:0801.4361].Google Scholar
  11. 11.
    N.S. Amelin et al., Phys. Rev. C 77, 014903 (2008) [arXiv:0711.0835].CrossRefADSGoogle Scholar
  12. 12.
    T.J. Humanic, Int. J. Mod. Phys. E 15, 197 (2006) [arXiv:nucl-th/0510049].CrossRefADSGoogle Scholar
  13. 13.
    B. Tomášik, AIP Conf. Proc. 828, 464 (2006) [arXiv:nuclth/0509100].CrossRefADSGoogle Scholar
  14. 14.
    T. Csörgő, J. Phys. Conf. Ser. 50, 259 (2006) [arXiv:nuclth/0505019].CrossRefADSGoogle Scholar
  15. 15.
    M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005) [arXiv:nucl-ex/0505014].CrossRefADSGoogle Scholar
  16. 16.
    T. Csörgő, L.P. Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21, 73 (2004) [arXiv:nucl-th/0306004].CrossRefGoogle Scholar
  17. 17.
    T. Csörgő, B. Lörstad, Phys. Rev. C 54, 1390 (1996) [arXiv:hep-ph/9509213].CrossRefADSGoogle Scholar
  18. 18.
    M. Csanád, T. Csörgő, B. Lörstad, Nucl. Phys. A 742, 80 (2004) [arXiv:nucl-th/0310040].CrossRefADSGoogle Scholar
  19. 19.
    M. Csanád, T. Csörgő, B. Lörstad, A. Ster, Acta Phys. Pol. B 35, 191 (2004) [arXiv:nucl-th/0311102].ADSGoogle Scholar
  20. 20.
    T. Csörgő, M. Csanád, B. Lörstad, A. Ster, Acta Phys. Hung. A 24, 139 (2005) [arXiv:hep-ph/0406042].CrossRefGoogle Scholar
  21. 21.
    A. Ster, T. Csörgő, B. Lörstad, Nucl. Phys. A 661, 419 (1999) [arXiv:hep-ph/9907338].CrossRefADSGoogle Scholar
  22. 22.
    T. Csörgő, Heavy Ion Phys. 15, 1 (2002) [arXiv:hepph/0001233].CrossRefADSGoogle Scholar
  23. 23.
    N.M. Agababyan et al., Phys. Lett. B 422, 359 (1998) [arXiv:hep-ex/9711009].CrossRefADSGoogle Scholar
  24. 24.
    T. Csörgő, B. Lörstad, J. Zimányi, Z. Phys. C 71, 491 (1996) [arXiv:hep-ph/9411307].ADSGoogle Scholar
  25. 25.
    T. Csörgő, Acta Phys. Pol. B 37, 483 (2006) [arXiv:hepph/0111139].ADSGoogle Scholar
  26. 26.
    T. Csörgő, Central Eur. J. Phys. 2, 556 (2004) [arXiv:nuclth/9809011].CrossRefADSGoogle Scholar
  27. 27.
    T. Csörgő, J. Zimányi, Heavy Ion Phys. 17, 281 (2003) [arXiv:nucl-th/0206051].CrossRefGoogle Scholar
  28. 28.
    S.V. Akkelin et al., Phys. Lett. B 505, 64 (2001) [arXiv:hep-ph/0012127].CrossRefADSGoogle Scholar
  29. 29.
    T. Csörgő, B. Lörstad, Nucl. Phys. A 590, 465c (1995) [arXiv:hep-ph/9503494].CrossRefADSGoogle Scholar
  30. 30.
    M. Csanád et al. [arXiv:nucl-th/0512078].Google Scholar
  31. 31.
    A. Adare et al., Phys. Rev. Lett. 98, 162301 (2007) [arXiv:nucl-ex/0608033].CrossRefADSGoogle Scholar
  32. 32.
    S. Afanasiev et al., Phys. Rev. Lett. 99, 052301 (2007) [arXiv:nucl-ex/0703024].CrossRefADSGoogle Scholar
  33. 33.
    B. Tomášik, Acta Phys. Pol. B 36, 2087 (2005) [arXiv:nuclth/0409074].ADSGoogle Scholar
  34. 34.
    S. Pratt, Phys. Rev. D 33, 1314 (1986).CrossRefADSGoogle Scholar
  35. 35.
    U.W. Heinz, A. Hummel, M.A. Lisa, U.A. Wiedemann, Phys. Rev. C 66, 044903 (2002) [arXiv:nucl-th/0207003].CrossRefADSGoogle Scholar
  36. 36.
    B. Tomášik, U.A. Wiedemann, in Quark Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) pp. 715–777 [arXiv:hep-ph/0210250].Google Scholar
  37. 37.
    S.S. Adler et al., Phys. Rev. C 69, 034909 (2004) [arXiv:nucl-ex/0307022].CrossRefADSGoogle Scholar
  38. 38.
    J. Adams et al., Phys. Rev. C 72, 014904 (2005) [arXiv:nucl-ex/0409033].CrossRefADSGoogle Scholar
  39. 39.
    J. Adams et al., Phys. Rev. Lett. 93, 012301 (2004) [arXiv:nucl-ex/0312009].CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Eötvös UniversityBudapest XIHungary
  2. 2.Univerzita Mateja BelaBanská BystricaSlovakia
  3. 3.FNSPE, Czech Technical UniversityPragueCzech Republic
  4. 4.MTA KFKI RMKIBudapest 114Hungary

Personalised recommendations