Advertisement

The European Physical Journal A

, Volume 37, Issue 1, pp 121–128 | Cite as

Chemical freeze-out temperature in the hydrodynamical description of Au + Au collisions at \( \sqrt {^S NN} = 200 GeV \)

  • P. HuovinenEmail author
Regular Article — Theoretical Physics

Abstract

We study the effect of separate chemical and kinetic freeze-outs to the ideal hydrodynamical flow in Au + Au collisions at RHIC (\( \sqrt {^S NN} = 200 GeV \) energy). Unlike earlier studies we explore how these effects can be counteracted by changes in the initial state of the hydrodynamical evolution. We conclude that the reproduction of pion, proton and antiproton yields necessitates a chemical freeze-out temperature of T ≈ 150MeV instead of T = 160–170 MeV motivated by thermal models. Contrary to previous reports, this lower temperature makes it possible to reproduce the p T spectra of hadrons if one assumes very small initial time, τ 0 = 0.2 fm/c. However, the p T differential elliptic flow, v 2(p T) remains badly reproduced. This points to the need to include dissipative effects (viscosity) or some other refinement to the model.

PACS

25.75.Dw Particle and resonance production 25.75.Ld Collective flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Huovinen, P.V. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006) [arXiv:nucl-th/0605008].CrossRefADSGoogle Scholar
  2. 2.
    P.F. Kolb, U.W. Heinz, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004) p. 634 [arXiv:nucl-th/0305084].Google Scholar
  3. 3.
    M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005) [arXiv:nucl-th/0405013].CrossRefADSGoogle Scholar
  4. 4.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004) p. 491 [arXiv:nuclth/0304013].Google Scholar
  5. 5.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) [arXiv:nucl-ex/0501009].CrossRefADSGoogle Scholar
  6. 6.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 112301 (2004) [arXiv:nucl-ex/0310004].CrossRefADSGoogle Scholar
  7. 7.
    K.J. Eskola, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, Phys. Lett. B 566, 187 (2003) [arXiv:hep-ph/0206230].CrossRefADSGoogle Scholar
  8. 8.
    K.J. Eskola, H. Honkanen, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, Phys. Rev. C 72, 044904 (2005) [arXiv:hep-ph/0506049].CrossRefADSGoogle Scholar
  9. 9.
    H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378, 95 (1992).CrossRefADSGoogle Scholar
  10. 10.
    N. Arbex, F. Grassi, Y. Hama, O. Socolowski, Phys. Rev. C 64, 064906 (2001); W.L. Qian, R. Andrade, F. Grassi, O.J. Socolowski, T. Kodama, Y. Hama, Int. J. Mod. Phys. E 16, 1877 (2007) [arXiv:nucl-th/0703078]; W.L. Qian, R. Andrade, F. Grassi, Y. Hama, T. Kodama, arXiv:0709.0845 [nucl-th].CrossRefADSGoogle Scholar
  11. 11.
    D. Teaney, arXiv:nucl-th/0204023.Google Scholar
  12. 12.
    T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002) [arXiv:nucl-th/0205043].CrossRefADSGoogle Scholar
  13. 13.
    P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003) [arXiv:hep-ph/0210222].CrossRefADSGoogle Scholar
  14. 14.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005) [arXiv:nucl-ex/0410003].CrossRefADSGoogle Scholar
  15. 15.
    T. Hirano, M. Gyulassy, Nucl. Phys. A 769, 71 (2006) [arXiv:nucl-th/0506049].CrossRefADSGoogle Scholar
  16. 16.
    A. Dumitru, D.H. Rischke, Phys. Rev. C 59, 354 (1999) [arXiv:nucl-th/9806003].CrossRefADSGoogle Scholar
  17. 17.
    Particle Data Group (S. Eidelman et al.), Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  18. 18.
    P. Huovinen, Nucl. Phys. A 761, 296 (2005) [arXiv:nuclth/0505036].CrossRefADSGoogle Scholar
  19. 19.
    P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000) [arXiv:hep-ph/0006129].CrossRefADSGoogle Scholar
  20. 20.
    J. Berges, S. Borsanyi, C. Wetterich, Nucl. Phys. B 727, 244 (2005) [arXiv:hep-ph/0505182].zbMATHCrossRefADSGoogle Scholar
  21. 21.
    Y.V. Kovchegov, A. Taliotis, Phys. Rev. C 76, 014905 (2007) [arXiv:0705.1234 [hep-ph]].CrossRefADSGoogle Scholar
  22. 22.
    S. Mrowczynski, Acta Phys. Pol. B 37, 427 (2006) [arXiv:hep-ph/0511052].ADSGoogle Scholar
  23. 23.
    P.F. Kolb, U.W. Heinz, P. Huovinen, K.J. Eskola, K. Tuominen, Nucl. Phys. A 696, 197 (2001) [arXiv:hep-ph/0103234].CrossRefADSGoogle Scholar
  24. 24.
    B. Muller, arXiv:nucl-th/0508062.Google Scholar
  25. 25.
    U. Heinz, G. Kestin, PoS CPOD2006, 038 (2006) [arXiv:nucl-th/0612105].Google Scholar
  26. 26.
    F. Karsch, E. Laermann, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004) p. 1 [arXiv:hep-lat/0305025].Google Scholar
  27. 27.
    M. Kaneta, N. Xu, arXiv:nucl-th/0405068.Google Scholar
  28. 28.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006) [arXiv:nucl-th/0511071].CrossRefADSGoogle Scholar
  29. 29.
    A. Baran, W. Broniowski, W. Florkowski, Acta Phys. Pol. B 35, 779 (2004) [arXiv:nucl-th/0305075].ADSGoogle Scholar
  30. 30.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005) [arXiv:hep-ph/0409071].CrossRefADSGoogle Scholar
  31. 31.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004) [arXiv:nucl-ex/0307022].CrossRefADSGoogle Scholar
  32. 32.
    Roy Lacey, private communication.Google Scholar
  33. 33.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 70, 051901 (2004) [arXiv:nucl-ex/0401006].CrossRefADSGoogle Scholar
  34. 34.
    M. Kataja, P.V. Ruuskanen, Phys. Lett. B 243, 181 (1990).CrossRefADSGoogle Scholar
  35. 35.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005) [arXiv:nucl-ex/0409033].CrossRefADSGoogle Scholar
  36. 36.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 182301 (2003) [arXiv:nucl-ex/0305013].CrossRefADSGoogle Scholar
  37. 37.
    A.K. Chaudhuri, arXiv:0704.0134 [nucl-th].Google Scholar
  38. 38.
    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007) [arXiv:0706.1522 [nucl-th]].CrossRefADSGoogle Scholar
  39. 39.
    H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008) [arXiv:0709.0742 [nucl-th]].CrossRefADSGoogle Scholar
  40. 40.
    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006) [arXiv:nucl-th/0511046].CrossRefADSGoogle Scholar
  41. 41.
    S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000) [arXiv:nucl-th/0001033].CrossRefADSGoogle Scholar
  42. 42.
    D. Teaney, J. Lauret, E.V. Shuryak, arXiv:nucl-th/0110037.Google Scholar
  43. 43.
    C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007) [arXiv:nucl-th/0607018].CrossRefADSGoogle Scholar
  44. 44.
    R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001) [arXiv:hep-ph/0008326]; R. Rapp, Phys. Rev. C 66, 017901 (2002) [arXiv:hep-ph/0204131].CrossRefADSGoogle Scholar
  45. 45.
    W. Cassing, Nucl. Phys. A 700, 618 (2002) [arXiv:nuclth/0105069].CrossRefADSGoogle Scholar
  46. 46.
    J. Noronha-Hostler, C. Greiner, I.A. Shovkovy, arXiv:nucl-th/0703079.Google Scholar
  47. 47.
    S. Pratt, K. Haglin, Phys. Rev. C 59, 3304 (1999).CrossRefADSGoogle Scholar
  48. 48.
    P. Huovinen, J.I. Kapusta, Phys. Rev. C 69, 014902 (2004) [arXiv:nucl-th/0310051].CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations