Skip to main content
Log in

Deuteron form factors in chiral effective theory: Regulator-independent results and the role of two-pion exchange

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We evaluate the deuteron charge, quadrupole, and magnetic form factors using wave functions obtained from chiral effective theory (χ ET) when the potential includes one-pion exchange, chiral two-pion exchange, and genuine contact interactions. We study the manner in which the results for form factors behave as the regulator is removed from the χ ET calculation, and compare co-ordinate and momentum space approaches. We show that, for both the LO and NNLO chiral potential, results obtained by imposing boundary conditions in co-ordinate space at r = 0 are equivalent to the Λ → ∞ limit of momentum space calculations. The regulator-independent predictions for deuteron form factors that result from taking the Λ → ∞ limit using the LO χ ET potential are in reasonable agreement with data up to momentum transfers of order 600MeV, provided that phenomenological information for the nucleon structure is employed. In this range the use of the NNLO χ ET potential results in only small changes to the LO predictions, and it improves the description of the zero of the charge form factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gilman, F. Gross, J. Phys. G 28, R37 (2002).

  2. M. Garcon, J.W. Van Orden, Adv. Nucl. Phys. 26, 293 (2001).

    Article  Google Scholar 

  3. I. Sick, Prog. Part. Nucl. Phys. 47, 245 (2001).

    Article  ADS  Google Scholar 

  4. V. Bernard, U.-G. Meißner, Annu. Rev. Nucl. Part. Sci. 57, 33 (2007), arXiv:hep-ph/0611231.

    Article  ADS  Google Scholar 

  5. S. Scherer, M.R. Schindler, arXiv:hep-ph/0505265.

  6. S. Weinberg, Phys. Lett. B 251, 288 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Weinberg, Nucl. Phys. B 363, 3 (1991).

    Article  ADS  Google Scholar 

  8. S. Weinberg, Phys. Lett. B 295, 114 (1992).

    Article  ADS  Google Scholar 

  9. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, arXiv:nucl-th/0008064.

  10. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002).

    Article  ADS  Google Scholar 

  11. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

    Article  ADS  Google Scholar 

  12. D.R. Phillips, arXiv:0710.3597 [nucl-th].

  13. M. Pavón Valderrama, E. Ruiz Arriola, Phys. Rev. C 74, 064004 (2006)

    Article  ADS  Google Scholar 

  14. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005).

    Article  ADS  Google Scholar 

  15. E. Epelbaum, U.-G. Meißner, arXiv:nucl-th/0609037.

  16. M.C. Birse, Phys. Rev. C 76, 034002 (2007).

    Article  ADS  Google Scholar 

  17. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002).

    Article  ADS  MATH  Google Scholar 

  18. M. Pavón Valderrama, E. Ruiz Arriola, Phys. Rev. C 72, 054002 (2005).

    Article  ADS  Google Scholar 

  19. C.J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 77, 014002 (2008), arXiv:0706.1242 [nucl-th].

    Article  ADS  Google Scholar 

  20. K.M. Case, Phys. Rev. 80, 797 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Pavón Valderrama, E. Ruiz Arriola, Phys. Rev. C 74, 054001 (2006).

    Article  ADS  Google Scholar 

  22. M. Rho, Phys. Rev. Lett. 66, 1275 (1991).

    Article  ADS  Google Scholar 

  23. T.S. Park, D.P. Min, M. Rho, Nucl. Phys. A 596, 515 (1996).

    Article  ADS  Google Scholar 

  24. D.R. Phillips, T.D. Cohen, Nucl. Phys. A 668, 45 (2000).

    Article  ADS  Google Scholar 

  25. M. Walzl, U.-G. Meißner, Phys. Lett. B 513, 37 (2001).

    Article  ADS  Google Scholar 

  26. D.R. Phillips, Phys. Lett. B 567, 12 (2003).

    Article  ADS  Google Scholar 

  27. D.R. Phillips, J. Phys. G 34, 365 (2007).

    Article  ADS  Google Scholar 

  28. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086 (1996).

    Article  ADS  Google Scholar 

  29. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997).

    Article  ADS  Google Scholar 

  30. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000).

    Article  ADS  Google Scholar 

  31. N. Kaiser, S. Gerstendorfer, W. Weise, Nucl. Phys. A 637, 395 (1998).

    Article  ADS  Google Scholar 

  32. H. Krebs, E. Epelbaum, U.-G. Meißner, Eur. Phys. J. A 32, 127 (2007).

    Article  ADS  Google Scholar 

  33. A. Nogga, C. Hanhart, Phys. Lett. B 634, 210 (2006).

    Article  ADS  Google Scholar 

  34. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002).

    Article  ADS  MATH  Google Scholar 

  35. D.W.L. Sprung, W. van Dijk, E. Wang, D.C. Zheng, P. Sarriguren, J. Martorell, Phys. Rev. C 49, 2942 (1994).

    Article  ADS  Google Scholar 

  36. L. Platter, D.R. Phillips, Phys. Lett. B 641, 164 (2006).

    Article  ADS  Google Scholar 

  37. U. van Kolck, Nucl. Phys. A 645, 273 (1999).

    Article  ADS  Google Scholar 

  38. D.R. Entem, E. Ruiz Arriola, M. Pavón Valderrama, R. Machleidt, arXiv:0709.2770 [nucl-th].

  39. J.L. Friar, Phys. Rev. C 60, 034002 (1999).

    Article  ADS  Google Scholar 

  40. M.C.M. Rentmeester, R.G.E. Timmermans, J.L. Friar, J.J. de Swart, Phys. Rev. Lett. 82, 4992 (1999).

    Article  ADS  Google Scholar 

  41. V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. A 615, 483 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Büttiker, U.-G. Meißner, Nucl. Phys. A 668, 97 (2000).

    Article  ADS  Google Scholar 

  43. E. Epelbaum, W. Glöckle, U.-G. Meißner, Eur. Phys. J. A 19, 401 (2004).

    Article  ADS  Google Scholar 

  44. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003).

    Article  ADS  Google Scholar 

  45. M. Pavón Valderrama, E. Ruiz Arriola, arXiv:nucl-th/0605078.

  46. N.L. Rodning, L.D. Knutson, Phys. Rev. C 41, 898 (1990).

    Article  ADS  Google Scholar 

  47. D. Abbott, Eur. Phys. J. A 7, 421 (2000).

    Article  ADS  Google Scholar 

  48. V.F. Dmitriev, Phys. Lett. B 157, 143 (1985).

    Article  ADS  Google Scholar 

  49. M. Ferro-Luzzi, Phys. Rev. Lett. 77, 2630 (1996).

    Article  ADS  Google Scholar 

  50. M.E. Schulze, Phys. Rev. Lett. 52, 597 (1984).

    Article  ADS  Google Scholar 

  51. M. Bouwhuis, Phys. Rev. Lett. 82, 3755 (1999).

    Article  ADS  Google Scholar 

  52. R. Gilman, Phys. Rev. Lett. 65, 1733 (1990).

    Article  ADS  Google Scholar 

  53. D.M. Nikolenko, Phys. Rev. Lett. 90, 072501 (2003).

    Article  ADS  Google Scholar 

  54. B. Boden, Z. Phys. C 49, 175 (1991).

    Article  Google Scholar 

  55. M. Garcon, Phys. Rev. C 49, 2516 (1994).

    Article  ADS  Google Scholar 

  56. D. Abbott, Phys. Rev. Lett. 84, 5053 (2000).

    Article  ADS  Google Scholar 

  57. M.A. Belushkin, H.W. Hammer, U.-G. Meißner, Phys. Rev. C 75, 035202 (2007).

    Article  ADS  Google Scholar 

  58. S. Klarsfeld, J. Matorell, J.A. Oteo, M. Nishimura, D.W.L. Sprung, Nucl. Phys. A 456, 373 (1986).

    Article  ADS  Google Scholar 

  59. R.F. Code, N.F. Ramsey, Phys. Rev. A 4, 1945 (1971).

    Article  ADS  Google Scholar 

  60. D.M. Bishop, L.M. Cheung, Phys. Rev. C 20, 381 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  61. T.E.O. Ericson, M. Rosa-Clot, Nucl. Phys. A 405, 497 (1983).

    Article  ADS  Google Scholar 

  62. I. Borbély, W. Grüebler, V. König, P.A. Schmelzbach, A.M. Mukhamedzhanov, Phys. Lett. B 160, 17 (1985).

    Article  ADS  Google Scholar 

  63. R. Schiavilla, I. Sick, Phys. Rev. C 64, 041002 (2001).

    Article  ADS  Google Scholar 

  64. I. Lindgren, in Alpha, Beta, and Gamma-Ray Spectroscopy, Vol. 2, edited by K. Siegbahn (North Holland, Amsterdam, 1965).

  65. G.G. Simon, C. Schmitt, V.H. Walther, Nucl. Phys. A 364, 285 (1981).

    Article  ADS  Google Scholar 

  66. S. Auffret, Phys. Rev. Lett. 54, 649 (1985).

    Article  ADS  Google Scholar 

  67. R. Cramer, Z. Phys. C 29, 513 (1985).

    Article  ADS  Google Scholar 

  68. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005).

    Article  ADS  Google Scholar 

  69. J. Adam, H. Arenhövel, Nucl. Phys. A 614, 289 (1997).

    Article  ADS  Google Scholar 

  70. D.O. Riska, Prog. Part. Nucl. Phys. 11, 199 (1984).

    Article  ADS  Google Scholar 

  71. J.L. Friar, Phys. Rev. C 22, 796 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  72. J. Adam, H. Goller, H. Arenhövel, Phys. Rev. C 48, 470 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. Bijnens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavón Valderrama, M., Nogga, A., Ruiz Arriola, E. et al. Deuteron form factors in chiral effective theory: Regulator-independent results and the role of two-pion exchange. Eur. Phys. J. A 36, 315–328 (2008). https://doi.org/10.1140/epja/i2007-10581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2007-10581-4

PACS.

Navigation