Skip to main content
Log in

The σK coupling in the chiral unitary approach and the isoscalar ¯N , ¯A interaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We evaluate the “σ " exchange contribution to the ¯N → ¯N scattering within a chiral unitary approach. We show that the chiral transition potentials for ππ → K¯ in the t -channel lead to a “σ " contribution that vanishes in the ¯ forward direction and, hence, would produce a null “σ " exchange contribution to the K- optical potential in nuclear matter in a simple impulse approximation. This is a consequence of the fact that the leading-order chiral Lagrangian gives an I = 0 ππ → K¯ amplitude proportional to the squared momentum transfer, q2. This finding poses questions on the meaning or the origin of “σ " exchange potentials used in relativistic mean-field approaches to the K- nuclear self-energy. This elementary “σ ” exchange potential in ¯N → ¯N is compared to the Weinberg-Tomozawa term and is found to be smaller than the present theoretical uncertainties but will be relevant in the future when aiming at fitting increasingly more accurate data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995) [arXiv:nucl-th/9505043].

    Article  ADS  Google Scholar 

  2. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998).

    Article  ADS  Google Scholar 

  3. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263 (2001).

    Article  ADS  Google Scholar 

  4. E. Oset, A. Ramos, C. Bennhold, Phys. Lett. B 527, 99 (2002) (530, 260 (2002)(E)).

    Article  ADS  Google Scholar 

  5. R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959).

    Article  ADS  Google Scholar 

  6. E.A. Veit, B.K. Jennings, A.W. Thomas, R.C. Barrett, Phys. Rev. D 31, 1033 (1985).

    Article  ADS  Google Scholar 

  7. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181 (2003).

    Article  ADS  Google Scholar 

  8. C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, M.J. Vicente Vacas, Phys. Rev. D 67, 076009 (2003).

    Article  ADS  Google Scholar 

  9. C. Garcia-Recio, M.F.M. Lutz, J. Nieves, Phys. Lett. B 582, 49 (2004).

    Article  ADS  Google Scholar 

  10. T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C 68, 018201 (2003).

    Article  ADS  Google Scholar 

  11. C. Garcia-Recio, J. Nieves, L.L. Salcedo, Phys. Rev. D 74, 034025 (2006) [arXiv:hep-ph/0505233].

    Article  ADS  Google Scholar 

  12. T. Hyodo, W. Weise, arXiv:0712.1613 [nucl-th].

  13. Crystall Ball Collaboration (S. Prakhov), Phys. Rev. C 70, 034605 (2004).

    Article  ADS  Google Scholar 

  14. V.K. Magas, E. Oset, A. Ramos, Phys. Rev. Lett. 95, 052301 (2005) [arXiv:hep-ph/0503043].

    Article  ADS  Google Scholar 

  15. DEAR Collaboration (G. Beer), Phys. Rev. Lett. 94, 212302 (2005).

    Article  ADS  Google Scholar 

  16. B. Borasoy, R. Nissler, W. Weise, Eur. Phys. J. A 25, 79 (2005).

    Article  Google Scholar 

  17. J.A. Oller, J. Prades, M. Verbeni, Phys. Rev. Lett. 95, 172502 (2005).

    Article  ADS  Google Scholar 

  18. J.A. Oller, Eur. Phys. J. A 28, 63 (2006).

    Article  ADS  Google Scholar 

  19. B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C 74, 055201 (2006) [arXiv:hep-ph/0606108].

    Article  ADS  Google Scholar 

  20. M. Lutz, Phys. Lett. B 426, 12 (1998) [arXiv:nucl-th/9709073].

    Article  ADS  Google Scholar 

  21. A. Ramos, E. Oset, Nucl. Phys. A 671, 481 (2000) [arXiv:nucl-th/9906016].

    Article  ADS  Google Scholar 

  22. J. Schaffner-Bielich, V. Koch, M. Effenberger, Nucl. Phys. A 669, 153 (2000) [arXiv:nucl-th/9907095].

    Article  ADS  Google Scholar 

  23. A. Cieply, E. Friedman, A. Gal, J. Mares, Nucl. Phys. A 696, 173 (2001) [arXiv:nucl-th/0104087].

    Article  ADS  Google Scholar 

  24. S. Hirenzaki, Y. Okumura, H. Toki, E. Oset, A. Ramos, Phys. Rev. C 61, 055205 (2000).

    Article  ADS  Google Scholar 

  25. A. Baca, C. Garcia-Recio, J. Nieves, Nucl. Phys. A 673, 335 (2000) [arXiv:nucl-th/0001060].

    Article  ADS  Google Scholar 

  26. Y. Akaishi, A. Dote, T. Yamazaki, Phys. Lett. B 613, 140 (2005) [arXiv:nucl-th/0501040].

    Article  ADS  Google Scholar 

  27. E. Oset, H. Toki, Phys. Rev. C 74, 015207 (2006) [arXiv:nucl-th/0509048].

    Article  ADS  Google Scholar 

  28. E. Oset, V.K. Magas, A. Ramos, H. Toki, in Proceedings of the IX International Conference on Hypernuclear and Strange Particle Physics, edited by J. Pochodzalla, Th. Walcher (Springer-Verlag and SIF, 2007) p. 263, arXiv:nucl-th/0701023.

  29. E. Friedman, A. Gal, J. Mares, Phys. Rev. C 60, 024314 (1999) [arXiv:nucl-th/9804072].

    Article  ADS  Google Scholar 

  30. J. Mares, E. Friedman, A. Gal, Phys. Lett. B 606, 295 (2005) [arXiv:nucl-th/0407063].

    Article  ADS  Google Scholar 

  31. J. Mares, E. Friedman, A. Gal, Nucl. Phys. A 770, 84 (2006) [arXiv:nucl-th/0601009].

    Article  ADS  Google Scholar 

  32. D. Gazda, E. Friedman, A. Gal, J. Mares, arXiv:0708.2157 [nucl-th].

  33. E. Friedman, A. Gal, arXiv:0705.3965 [nucl-th].

  34. L. Dang, L. Li, X.H. Zhong, P.Z. Ning, Phys. Rev. C 75, 068201 (2007) [arXiv:nucl-th/0701060].

    Article  ADS  Google Scholar 

  35. X.H. Zhong, L. Li, C.H. Cai, P.Z. Ning, Commun. Theor. Phys. 41, 573 (2004).

    Google Scholar 

  36. X.H. Zhong, G.X. Peng, L. Li, P.Z. Ning, Phys. Rev. C 74, 034321 (2006).

    Article  ADS  Google Scholar 

  37. E. Oset, H. Toki, M. Mizobe, T.T. Takahashi, Prog. Theor. Phys. 103, 351 (2000) [arXiv:nucl-th/0011008].

    Article  ADS  Google Scholar 

  38. K. Sasaki, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 74, 064002 (2006) [arXiv:nucl-th/0607068].

    Article  ADS  Google Scholar 

  39. U.G. Meissner, E. Oset, A. Pich, Phys. Lett. B 353, 161 (1995) [arXiv:nucl-th/9503011].

    Article  ADS  Google Scholar 

  40. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997) (652, 407 (1999)(E)).

    Article  ADS  Google Scholar 

  41. N. Kaiser, Eur. Phys. J. A 3, 307 (1998).

    Article  ADS  Google Scholar 

  42. V.E. Markushin, Eur. Phys. J. A 8, 389 (2000) [arXiv:hep-ph/0005164].

    Article  ADS  Google Scholar 

  43. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999) (60, 099906 (1999)(E)

    Article  ADS  Google Scholar 

  44. J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999) [arXiv:hep-ph/9809337].

    Article  ADS  Google Scholar 

  45. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001) [arXiv:hep-ph/ 0005297].

    Article  MATH  ADS  Google Scholar 

  46. D. Gamermann, E. Oset, D. Strottman, M.J. Vicente Vacas, Phys. Rev. D 76, 074016 (2007) [arXiv:hep-ph/ 0612179].

    Article  ADS  Google Scholar 

  47. T. Muto, Structure of multi-antikaonic nuclei in the relativistic mean field model, talk given at the Chiral 07 Workshop, Osaka, Nov. 2007 (http://www.rcnp. osaka-u.ac.jp/$\sim$chiral07/).

  48. T. Maruyama, T. Tatsumi, T. Endo, S. Chiba, Recent Res. Devel. Phys. 7, 1 (2006)

    MathSciNet  Google Scholar 

  49. T. Maruyama, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, S. Chiba, Phys. Rev. C 73, 035802 (2006) [arXiv:nucl-th/0505063].

    Article  ADS  Google Scholar 

  50. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987).

    Article  Google Scholar 

  51. M. Fukugita, Y. Kuramashi, M. Okawa, A. Ukawa, Phys. Rev. D 51, 5319 (1995) [arXiv:hep-lat/9408002].

    Article  ADS  Google Scholar 

  52. T. Muto, arXiv:nucl-th/0702027.

  53. T.A. Rijken, Y. Yamamoto, Phys. Rev. C 73, 044008 (2006) [arXiv:nucl-th/0603042].

    Article  ADS  Google Scholar 

  54. J.R. Pelaez, G. Rios, Phys. Rev. Lett. 97, 242002 (2006) [arXiv:hep-ph/0610397].

    Article  ADS  Google Scholar 

  55. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006) [arXiv:hep-ph/0512364].

    Article  ADS  Google Scholar 

  56. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) [arXiv:hep-ph/0103088].

    Article  ADS  Google Scholar 

  57. N. Kaiser, S. Gerstendorfer, W. Weise, Nucl. Phys. A 637, 395 (1998) [arXiv:nucl-th/9802071].

    Article  ADS  Google Scholar 

  58. D. Jido, E. Oset, J.E. Palomar, Nucl. Phys. A 694, 525 (2001) [arXiv:nucl-th/0101051].

    Article  ADS  Google Scholar 

  59. R.B. Wiringa, R.A. Smith, T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984).

    Article  ADS  Google Scholar 

  60. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) [arXiv:nucl-th/9408016].

    Article  ADS  Google Scholar 

  61. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

    Article  ADS  Google Scholar 

  62. B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C 74, 055201 (2006) [arXiv:hep-ph/0606108].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. Schäfer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez Torres, A., Khemchandani, K.P. & Oset, E. The σK coupling in the chiral unitary approach and the isoscalar ¯N , ¯A interaction. Eur. Phys. J. A 36, 211–218 (2008). https://doi.org/10.1140/epja/i2007-10574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2007-10574-3

PACS.

Navigation