Skip to main content
Log in

Neutron stars as cosmic laboratories to explore hadronic matter at ultra-high densities

  • QNP 2006
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We examine the present status of the theoretical calculations for the internal structure of neutron stars, and the connection with the microscopic properties of ultradense hadronic matter. We discuss the possibility to have quark deconfinement phase transition in the core of neutron stars, and we explore some of its astrophysical implications as the quark-deconfinement nova model for gamma-ray bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Brown, H.A. Bethe, Astrophys. J. 423, 659 (1994).

    Article  ADS  Google Scholar 

  2. I. Bombaci, Astron. Astrophys. 305, 871 (1996).

    ADS  Google Scholar 

  3. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, R. Knorren, J.M. Lattimer, Phys. Rep. 280, 1 (1997).

    Article  ADS  Google Scholar 

  4. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 62, 035801 (2000).

    Article  Google Scholar 

  5. N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer Verlag, 1996).

  6. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (IoP Publishing, 1999).

  7. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  8. X.-D Li, I. Bombaci, M. Dey, J. Dey, E.P.J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999).

    Article  ADS  Google Scholar 

  9. M.G. Alford, Annu. Rev. Nucl. Part. Sci. 51, 131 (2001).

    Article  ADS  Google Scholar 

  10. G. Nardulli, Riv. Nuovo Cimento 25, 1 (2001).

    Google Scholar 

  11. S.E. Thorsett, D. Chakrabarty, Astrophys. J. 512, 288 (1999).

    Article  ADS  Google Scholar 

  12. H. Quaintrell, Astron. Astrophys. 401, 313 (2003).

    Article  ADS  Google Scholar 

  13. J.A. Orosz, E. Kuulkers, Mon. Not. R. Astron. Soc. 305, 1 (1999).

    Article  Google Scholar 

  14. M.H. van Kerkwijk, Astron. Astrophys. 303, 483 (1995).

    ADS  Google Scholar 

  15. D.J. Nice, Astrophys. J. 634, 1242 (2005).

    Article  ADS  Google Scholar 

  16. H.Q. Song, Phys. Rev. Lett. 81, 1584 (1998).

    Article  ADS  Google Scholar 

  17. B.S. Pudliner, Phys. Rev. Lett. 74, 4396 (1995).

    Article  ADS  Google Scholar 

  18. R.B. Wiringa, V. Ficks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).

    Article  ADS  Google Scholar 

  19. M. Baldo, I. Bombaci, G.F. Bugio, Astron. Astrophys. 328, 274 (1997).

    ADS  Google Scholar 

  20. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).

    Article  ADS  Google Scholar 

  21. I. Bombaci, in Perspectives on Theoretical Nuclear Physics, Proceedings of the Conference Problems in Theoretical Nuclear Physics, October 1995, Cortona (Italy), edited by I. Bombaci (ETS, Pisa, 1996) p. 223.

  22. I. Bombaci, in Isospin Physics in Heavy-Ion Collisions at Intermediate Energies, edited by B.-A. Li, W.U. Schröder (Nova Science Publisher, New York, 2001) p. 35.

  23. C. Gale, G, Bertsch, S. Das Gupta, Phys. Rev. C 35, 1666 (1997).

    Article  ADS  Google Scholar 

  24. M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1998).

    Article  ADS  Google Scholar 

  25. B.-A. Li, A.W. Steiner, Phys. Lett. B 642, 436 (2006).

    Article  ADS  Google Scholar 

  26. W. Zuo, Phys. Rev. C 70, 055802 (2004).

    Article  ADS  Google Scholar 

  27. M. Di Toro, Nucl. Phys. A 775, 102 (2006).

    Article  ADS  Google Scholar 

  28. P.G. Krastev, F. Sammarruca, Phys. Rev. C 74, 025808 (2006).

    Article  ADS  Google Scholar 

  29. I. Vidaña, I. Bombaci, A. Polls, A. Ramos, Astron. Astrophys. 399, 687 (2003).

    Article  ADS  Google Scholar 

  30. N.K. Glendenning, Astrophys. J. 293, 470 (1985).

    Article  ADS  Google Scholar 

  31. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991).

    Article  ADS  Google Scholar 

  32. M. Baldo, G.F. Burgio, H.J. Schulze, Phys. Rev. C 61, 055801 (2000).

    Article  ADS  Google Scholar 

  33. I. Vidaña, A. Polls, A. Ramos, L. Engvik, M. Hjorth-Jensen, Phys. Rev. C 62, 035801 (2000).

    Article  ADS  Google Scholar 

  34. N.K. Glendenning, S. Pei, F. Weber, Phys. Rev. Lett. 79, 1603 (1997).

    Article  ADS  Google Scholar 

  35. T.M. Tauris, S. Konar, Astron. Astrophys. 376, 543 (2001).

    Article  ADS  Google Scholar 

  36. I. Bombaci, I. Parenti, I. Vidaña, Astrophys. J. 614, 314 (2004).

    Article  ADS  Google Scholar 

  37. Z. Berezhiani, I. Bombaci, A. Drago, F. Frontera, A. Lavagno, Astrophys. J. 586, 1250 (2003).

    Article  ADS  Google Scholar 

  38. I. Bombaci, B. Datta, Astrophys. J. 530, L72 (2000).

  39. L. Amati, Science 290, 953 (2000).

    Article  ADS  Google Scholar 

  40. J.N. Reeves, Nature 414, 512 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bombaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombaci, I. Neutron stars as cosmic laboratories to explore hadronic matter at ultra-high densities. Eur. Phys. J. A 31, 810–815 (2007). https://doi.org/10.1140/epja/i2006-10266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10266-6

PACS.

Navigation