Skip to main content
Log in

Transport coefficients in Chiral Perturbation Theory

  • QNP 2006
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory (ChPT) using the Linear Response Theory (LRT). More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in relativistic heavy-ion collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a non-zero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Le Bellac, Thermal Field Theory (Cambridge University Press, 2000).

  3. S. Jeon, Phys. Rev. D 52, 3591 (1995).

    Article  ADS  Google Scholar 

  4. M.A. Valle Basagoiti, Phys. Rev. D 66, 045005 (2002).

    Article  ADS  Google Scholar 

  5. J.L. Goity, H. Leutwyler, Phys. Lett. B 228, 517 (2002).

    Article  ADS  Google Scholar 

  6. D. Fernández-Fraile, A. Gómez Nicola, Phys. Rev. D 73, 045025 (2006).

    Article  ADS  Google Scholar 

  7. A. Gómez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002).

    Article  ADS  Google Scholar 

  8. A. Dobado, A. Gómez Nicola, F.J. Llanes-Estrada, J.R. Pelaez, Phys. Rev. C 66, 055201 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0011, 001 (2000).

    Article  ADS  Google Scholar 

  10. WA98 Collaboration (M.M. Aggarwal), Phys. Rev. Lett. 93, 022301 (2004).

    Article  ADS  Google Scholar 

  11. S. Turbide, R. Rapp, C. Gale, Phys. Rev. C 69, 014903 (2004)

    Article  ADS  Google Scholar 

  12. A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004).

    Article  ADS  Google Scholar 

  13. D. Davesne, Phys. Rev. C 53, 3069 (1996).

    Article  ADS  Google Scholar 

  14. M. Prakash, M. Prakash, R. Venugopalan, G.M. Welke, Phys. Rev. Lett. 70, 1228 (1993).

    Article  ADS  Google Scholar 

  15. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).

    Article  ADS  Google Scholar 

  16. D. Teaney, Phys. Rev. D 68, 034913 (2003).

    ADS  Google Scholar 

  17. L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006).

    Article  ADS  Google Scholar 

  18. A. Nakamura, S. Sakai, Phys. Rev. Lett. 94, 72305 (2005)

    Article  ADS  Google Scholar 

  19. P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Fraile, D., Gómez Nicola, A. Transport coefficients in Chiral Perturbation Theory. Eur. Phys. J. A 31, 848–850 (2007). https://doi.org/10.1140/epja/i2006-10194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10194-5

PACS.

Navigation