Skip to main content

Towards an understanding of the light scalar mesons

Abstract.

Although studied for many years the nature of the light scalar mesons remains controversial. Here we shall present a method, applicable for s-wave states located close to a threshold, that allows one to quantify the molecular part of a given state. When applied to the f 0(980) a dominance of the molecular component is found. In the second part, we show that requirements of field-theoretic consistency and chiral symmetry, when applied to the scattering of light pseudo-scalars, naturally lead to the appearance of dynamical poles in the scalar sector. A program is proposed on how to further investigate experimentally the mixing between these dynamical states and possible genuine quark states.

This is a preview of subscription content, access via your institution.

References

  1. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006) [arXiv:hep-ph/0512364]

    Article  ADS  Google Scholar 

  2. D. Morgan, Phys. Lett. B 51, 71 (1974)

    Article  ADS  Google Scholar 

  3. E. Van Beveren, T.A. Rijken, K. Metzger, C. Dullemond, G. Rupp, J.E. Ribeiro, Z. Phys. C 30, 615 (1986).

    Article  Google Scholar 

  4. N.A. Tornqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996) [arXiv:hep-ph/9511210].

    Article  ADS  Google Scholar 

  5. R. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  6. D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Phys. Rev. D 59, 074026 (1999) [arXiv:hep-ph/9808415].

    Article  ADS  Google Scholar 

  7. J. Weinstein, N. Isgur, Phys. Rev. Lett. 48, 659 (1982)

    Article  ADS  Google Scholar 

  8. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. Lett. 80, 3452 (1998) [arXiv:hep-ph/9803242].

    Article  ADS  Google Scholar 

  9. S. Weinberg, Phys. Rev. 130, 776 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. V. Baru, Phys. Lett. B 586, 53 (2004).

    Article  ADS  Google Scholar 

  11. M.R. Pennington, Phys. Rev. Lett. 97, 011601 (2006).

    Article  ADS  Google Scholar 

  12. J.L. Rosner, arXiv:hep-ph/0608102.

  13. B. Kerbikov, Phys. Lett. B 596, 200 (2004) [arXiv:hep-ph/0402022].

    Article  ADS  Google Scholar 

  14. S. Flatté, Phys. Lett. B 63, 224 (1976).

    Article  ADS  Google Scholar 

  15. V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, U.G. Meißner, Eur. Phys. J. A 23, 523 (2005) [arXiv:nucl-th/0410099].

    Article  ADS  Google Scholar 

  16. BES Collaboration (M. Ablikim), Phys. Lett. B 607, 243 (2005) [arXiv:hep-ex/0411001].

    Article  ADS  Google Scholar 

  17. J.R. Pelaez, Phys. Rev. D 55, 4193 (1997) [arXiv:hep-ph/9609427].

    Article  ADS  Google Scholar 

  18. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).

    Article  ADS  Google Scholar 

  19. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) [arXiv:hep-ph/0103088].

    Article  ADS  Google Scholar 

  20. N.A. Tornqvist, Z. Phys. C 68, 647 (1995) [arXiv:hep-ph/9504372].

    Article  Google Scholar 

  21. E. van Beveren, D.V. Bugg, F. Kleefeld, G. Rupp, arXiv:hep-ph/0606022

  22. N.N. Achasov, G.N. Shestakov, Phys. At. Nucl. 56, 1270 (1993) [Yad. Fiz. 56N9, 206 (1993)].

    Google Scholar 

  23. U.G. Meißner, Comments Nucl. Part. Phys. 20, 119 (1991).

    Google Scholar 

  24. A. Dobado, J.R. Pelaez, Phys. Rev. D 47, 4883 (1993) [arXiv:hep-ph/9301276].

    Article  ADS  Google Scholar 

  25. J.R. Pelaez, Mod. Phys. Lett. A 19, 2879 (2004) [arXiv:hep-ph/0411107].

    Article  ADS  Google Scholar 

  26. J.R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004) [arXiv:hep-ph/0309292].

    Article  ADS  Google Scholar 

  27. D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl. Phys. A 516, 513 (1990)

    Article  ADS  Google Scholar 

  28. Y. Kalashnikova, A. Kudryavtsev, A.V. Nefediev, J. Haidenbauer, C. Hanhart, Phys. Rev. C 73, 045203 (2006) [arXiv:nucl-th/0512028].

    Article  ADS  Google Scholar 

  29. N.N. Achasov, A.V. Kiselev, Phys. Rev. D 73, 054029 (2006) [arXiv:hep-ph/0512047].

    Article  ADS  Google Scholar 

  30. R.R. Akhmetshin, Phys. Lett. B 462, 480 (1999).

    Google Scholar 

  31. A. Aloisio, Phys. Lett. B 536, 209 (2002)

    Article  ADS  Google Scholar 

  32. E. Marko, S. Hirenzaki, E. Oset, H. Toki, Phys. Lett. B 470, 20 (1999)

    Article  Google Scholar 

  33. V.E. Markushin, Eur. Phys. J. A 8, 389 (2000).

    Article  ADS  Google Scholar 

  34. J.A. Oller, Phys. Lett. B 426, 7 (1998)

    Article  ADS  Google Scholar 

  35. F.E. Close, N. Isgur, S. Kumano, Nucl. Phys. B 389, 513 (1993).

    Article  ADS  Google Scholar 

  36. N.N. Achasov, V.V. Gubin, V.I. Shevchenko, Phys. Rev. D 56, 203 (1997).

    Article  ADS  Google Scholar 

  37. Y.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, C. Hanhart, J. Haidenbauer, Eur. Phys. J. A 24, 437 (2005) [arXiv:hep-ph/0412340].

    Article  ADS  Google Scholar 

  38. N.N. Achasov, A.V. Kiselev, arXiv:hep-ph/0606268.

  39. Yu.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, J. Haidenbauer, C. Hanhart, arXiv:hep-ph/0608191.

  40. G. Isidori, L. Maiani, M. Nicolaci, S. Pacetti, JHEP 0605, 049 (2006) [arXiv:hep-ph/0603241]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hanhart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanhart, C. Towards an understanding of the light scalar mesons. Eur. Phys. J. A 31, 543–548 (2007). https://doi.org/10.1140/epja/i2006-10193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10193-6

PACS.

  • 13.60.Le Meson production
  • 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy \(\leq\ensuremath 10 {\rm GeV})\)
  • 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV