Skip to main content

The neutrinoless double-beta decay: A test for new physics

Abstract.

The neutrinoless double-beta decay is not allowed in the Standard Model (SM) but it is allowed in most Grand Unified Theories (GUTs). The neutrino must be a Majorana particle (identical with its antiparticle) and must have a mass to allow the neutrinoless double-beta decay. Apart of one claim that the neutrinoless double-beta decay in 76Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for the neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

This is a preview of subscription content, access via your institution.

References

  1. T. Tomoda, A. Faessler, Phys. Lett. B 199, 475 (1987).

    Article  ADS  Google Scholar 

  2. A. Faessler, S. Kovalenko, F. Simkovic, J. Schwieger, Phys. Rev. Lett. 78, 183 (1997).

    Article  ADS  Google Scholar 

  3. O. Civitarese, A. Faessler, T. Tomoda, Phys. Lett. B 194, 11 (1987).

    Article  ADS  Google Scholar 

  4. J. Toivanen, J. Suhonen, Phys. Lett. 75, 410 (1995) and Phys. Rev. C 55, 2314 (1997).

    Article  Google Scholar 

  5. J. Schwieger, F. Simkovic, A. Faessler, Nucl. Phys. A 600, 179 (1996)

    Article  ADS  Google Scholar 

  6. V.A. Rodin, A. Faessler, F. Simkovic, P. Vogel, Phys. Rev. C 68, 044302 (2003)

    Article  ADS  Google Scholar 

  7. I.S. Towner, J.C. Hardy, preprint nucl-th/9504015 v1 (12 Apr 1995).

  8. K. Muto, Phys. Lett. B 391, 243 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  9. O. Civitarese, J. Suhonen, Nucl. Phys. A 729, 867 (2003)

    Article  ADS  Google Scholar 

  10. J. Suhonen, S.B. Khadkikar, A. Faessler, Nucl. Phys. A 529, 727 (1991).

    Article  ADS  Google Scholar 

  11. Ch.C. Moustakidis, T.S. Kosmas, F. Simkovic, Amand Faessler, nucl-th/0511013.

  12. R. Alvarez-Rodriguez, P. Sarriguren, E. Moya de Guerra, L. Pacearescu, Amand Faessler, F. Simkovic, Phys. Rev. C 70, 064309 (2004) nucl-th/0411039.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Faessler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faessler, A. The neutrinoless double-beta decay: A test for new physics. Eur. Phys. J. A 31, 424–428 (2007). https://doi.org/10.1140/epja/i2006-10189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10189-2

PACS.

  • 23.40.-s β decay; double β decay; electron and muon capture
  • 21.60.-n Nuclear structure models and methods
  • 12.60.-i Models beyond the standard model