Skip to main content
Log in

Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2007

This article has been updated

Abstract.

The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus, these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. S. Das Gupta, A.Z. Mekjian, M.B. Tsang, Adv. Nucl. Phys. 26, 91 (2001) and references therein.

    Google Scholar 

  2. C.B. Das, S. Das Gupta, W.G. Lynch, A.Z. Mekjian, M.B. Tsang, Phys. Rep. 406, 1 (2005).

    Article  ADS  Google Scholar 

  3. J. Randrup, S.E. Koonin, Nucl. Phys. A 356, 223 (1981).

    Article  ADS  Google Scholar 

  4. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995) and references therein.

    Article  ADS  Google Scholar 

  5. D.H.E. Gross, Phys. Rep. 279, 119 (1997) and references therein.

    Article  ADS  Google Scholar 

  6. W.A. Friedman, W.G. Lynch, Phys. Rev. C 28, 16 (1983).

    Article  ADS  Google Scholar 

  7. W.A. Friedman, Phys. Rev. Lett. 60, 2125 (1988).

    Article  ADS  Google Scholar 

  8. W.A. Friedman, Phys. Rev. C 42, 667 (1990).

    Article  ADS  Google Scholar 

  9. A.S. Botvina, A.S. Iljinov, I.N. Mishustin, J.P. Bondorf, R. Donangelo, K. Sneppen, Nucl. Phys. A 475, 663 (1987).

    Article  ADS  Google Scholar 

  10. J.P. Bondorf, Nucl. Phys. A 443, 321 (1985)

    Article  ADS  Google Scholar 

  11. A.S. Botvina, A.S. Iljinov, I.N. Mishustin, Sov. J. Nucl. Phys. 42, 712 (1985).

    Google Scholar 

  12. G.F. Bertsch, Am. J. Phys. 72, 983 (2004).

    Article  Google Scholar 

  13. S.R. Souza, W.P. Tan, R. Donangelo, C.K. Gelbke, W.G. Lynch, M.B. Tsang, Phys. Rev. C 62, 064607 (2000).

    Article  ADS  Google Scholar 

  14. W.P. Tan, S.R. Souza, R.J. Charity, R. Donangelo, W.G. Lynch, M.B. Tsang, Phys. Rev. C 68, 034609 (2003).

    Article  ADS  Google Scholar 

  15. Al.H. Raduta, Ad.R. Raduta, Phys. Rev. C 65, 054610 (2002).

    Article  ADS  Google Scholar 

  16. A. Le Fèvre, Nucl. Phys. A 735, 219 (2004).

    Article  ADS  Google Scholar 

  17. F. Gulminelli, Ph. Chomaz, Phys. Rev. Lett. 82, 1402 (1999).

    Article  ADS  Google Scholar 

  18. D. Hahn, H. Stöcker, Nucl. Phys. A 476, 718 (1988).

    Article  ADS  Google Scholar 

  19. C.E. Aguiar, R. Donangelo, S.R. Souza, Phys. Rev. C 73, 024613 (2006).

    Article  ADS  Google Scholar 

  20. T.X. Liu, Phys. Rev. C 69, 014603 (2004).

    Article  ADS  Google Scholar 

  21. H.S. Xu, Phys. Rev. Lett. 85, 716 (2000).

    Article  ADS  Google Scholar 

  22. See, e.g., A.S. Botvina, I.N. Mishustin, this topical issue.

  23. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940).

    Article  ADS  Google Scholar 

  24. M. Colonna, private communications.

  25. R.J. Charity, Nucl. Phys. A 483, 371 (1988), the code is available at http://www.chemistry.wustl.edu/\~rc/ gemini\_f77.

    Article  ADS  Google Scholar 

  26. K. Yuasa-Nakagawa, Phys. Rev. C 53, 997 (1996).

    Article  ADS  Google Scholar 

  27. J. Cibor, Phys. Rev. C 55, 264 (1997).

    Article  ADS  Google Scholar 

  28. R. Wada, Phys. Rev. C 62, 34601 (2000)

    Article  ADS  Google Scholar 

  29. D. Durand, Nucl. Phys. A 541, 266 (1992).

    Article  ADS  Google Scholar 

  30. J.D. Frankland, Nucl. Phys. A 689, 940 (2001).

    Article  ADS  Google Scholar 

  31. D. Lacroix, A. Van Lauwe, D. Durand, Phys. Rev. C 69, 054604 (2004).

    Article  ADS  Google Scholar 

  32. F. Gulminelli, Ph. Chomaz, Phys. Rev. C 71, 054607 (2005).

    Article  ADS  Google Scholar 

  33. G.J. Kunde, Phys. Rev. Lett. 77, 2897 (1996).

    Article  ADS  Google Scholar 

  34. J. Konopka, H. Graf, H. Stöcker, W. Greiner, Phys. Rev. C 50, 2085 (1994).

    Article  ADS  Google Scholar 

  35. Hongfei Xi, Z. Phys. A 359, 397 (1997)

    Article  Google Scholar 

  36. A. Kelić, J.B. Natowitz, K.-H. Schmidt, this topical issue.

  37. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Google Scholar 

  38. M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, H.S. Xu, Phys. Rev. Lett. 86, 5023 (2001).

    Article  ADS  Google Scholar 

  39. M.B. Tsang, Phys. Rev. C 64, 054615 (2001).

    Article  ADS  Google Scholar 

  40. A.S. Botvina, O.V. Lozhkin, W. Trautmann, Phys. Rev. C 65, 044610 (2002).

    Article  ADS  Google Scholar 

  41. A. Ono, P. Danielewicz, W.A. Friedman, Phys. Rev. C 68, 051601(R) (2003).

    Article  ADS  Google Scholar 

  42. M. Colonna, M.B. Tsang, this topical issue.

  43. E. Geraci, Nucl. Phys. A 732, 173 (2004).

    Article  ADS  Google Scholar 

  44. A. Le Fèvre, G. Auger, M.L. Begemann-Blaich, Phys. Rev. Lett. 94, 162701 (2005).

    Article  ADS  Google Scholar 

  45. A. Ono, arXiv:nucl-ex/0507018.

  46. M.B. Tsang, W.G. Lynch, H. Xi, W.A. Friedman, Phys. Rev. Lett. 78, 3836 (1997).

    Article  ADS  Google Scholar 

  47. S. Albergo, Nuovo Cimento A 89, 1 (1985).

    Google Scholar 

  48. M.J. Huang, Phys. Rev. Lett. 78, 1648 (1997).

    Article  ADS  Google Scholar 

  49. H. Xi, Phys. Lett. B 431, 8 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tsang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, M.B., Bougault, R., Charity, R. et al. Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions. Eur. Phys. J. A 30, 129–139 (2006). https://doi.org/10.1140/epja/i2006-10111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10111-0

PACS.

Navigation