Skip to main content
Log in

What can we learn from hydrodynamic analysis at RHIC?

  • Quark-Gluon-Plasma Thermalization
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy-ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and that this is a manifestation of the rapid increase of the entropy density in the vicinity of QCD critical temperature, namely, deconfinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.bnl.gov/bnlweb/pubaf/pr/PR\_display.asp ?prID=05-38.

  2. P. Huovinen, in Quark Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, 2004) p. 600

  3. STAR Collaboration (K.H. Ackermann ), Phys. Rev. Lett. 86, 402 (2001)

    Article  ADS  Google Scholar 

  4. PHENIX Collaboration (K. Adcox ), Phys. Rev. Lett. 89, 212301 (2002)

    Article  ADS  Google Scholar 

  5. PHOBOS Collaboration (B.B. Back ), Phys. Rev. Lett. 89, 222301 (2002)

    Article  ADS  Google Scholar 

  6. BRAHMS Collaboration (H. Ito), talk given at the 18th International Conference on Nucleus-Nucleus Collisions, Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 August 2005.

  7. C. Nonaka, S. Bass, nucl-th/0510038. (This paper employs different hydrodynamic and hadronic cascade codes from the present paper.)

  8. See, for example, F. Karsch, Lect. Notes Phys. 583, 209 (2002).

    Article  Google Scholar 

  9. PHENIX Collaboration (K. Adcox ), nucl-ex/0410003. %%CITATION = NUCL-EX 0410003

  10. T. Hirano, M. Gyulassy, nucl-th/0506049.

  11. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002). %%CITATION = NUCL-TH 0205043

    Article  ADS  Google Scholar 

  12. T. Hirano, Y. Nara, Nucl. Phys. A 743, 305 (2004). %%CITATION = NUCL-TH 0404039

    Article  ADS  Google Scholar 

  13. Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000).

    Article  ADS  Google Scholar 

  14. T. Hirano, Phys. Rev. C 65, 011901 (2002)

    Article  ADS  Google Scholar 

  15. T. Hirano, Phys. Rev. Lett. 86, 2754 (2001). %%CITATION = NUCL-TH 0004029

    Article  ADS  Google Scholar 

  16. Recently, the effect of event-by-event fluctuation in the initial conditions is found to reduce $v_2$ in forward and backward rapidity regions. It is concluded that a lack of thermalisation is not needed when fluctuation is taken into account: R. Andrade, F. Grassi, Y. Hama, T. Kodama, O. Socolowski jr., B. Tavares, nucl-th/0511021.

  17. T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, nucl-th/0511046.

  18. One can find many papers in these proceedings for recent progress to understand non-equilibrium aspects of gauge theories and an initial prethermalisation stage in relativistic heavy-ion collisions.

  19. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, T. What can we learn from hydrodynamic analysis at RHIC?. Eur. Phys. J. A 29, 19–22 (2006). https://doi.org/10.1140/epja/i2005-10291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10291-y

PACS.

Navigation