Skip to main content
Log in

Axial exchange currents and nucleon spin

  • Hadron Physics
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We calculate the axial couplings gA8(0) and gA0(0) related to the spin of the nucleon in a constituent quark model. In addition to the standard one-body axial currents, the model includes two-body axial exchange currents. The latter are necessary to satisfy the Partial Conservation of Axial Current (PCAC) condition. For both axial couplings we find significant corrections to the standard quark model prediction. Exchange currents reduce the valence quark contribution to the nucleon spin and afford an interpretation of the missing nucleon spin as orbital angular momentum carried by nonvalence quark degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Sehgal, Phys. Rev. D 10, 1663 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  2. Xiangdong Ji, Phys. Rev. Lett. 78, 610 (1997).

    Article  ADS  Google Scholar 

  3. F. Close, Few-Body Syst., Suppl. 6, 368 (1992).

    Google Scholar 

  4. S.J. Brodsky, J. Ellis, M. Karliner, Phys. Lett. B 206, 309 (1988)

    Article  ADS  Google Scholar 

  5. E143 Collaboration (K. Abe), Phys. Rev. D 58, 112003 (1998).

    Article  ADS  Google Scholar 

  6. European Muon Collaboration (J. Ashman), Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  7. We use the notation $q_{\mu} = (\nu, -\mathbf{q})$, where $\nu$ is the energy transfer and $\mathbf{q}$ the three-momentum transfer to the proton.

  8. R.D. Carlitz, Int. J. Mod. Phys. E 1, 505 (1992).

    Article  ADS  Google Scholar 

  9. In the following, we use the name ``QCD quark'' instead of ``current quark'' to denote the nearly massless quark fields appearing in the QCD Lagrangian.

  10. A description in which the axial current contains only one-body operators is often referred to as ``impulse approximation''.

  11. Due to the axial gluon anomaly of QCD, gluon spin contributions $\Delta G(Q^2)$ are admixed to the quark spin contributions in leading-order perturbation theory. As a result, the deep inelastic scattering experiments actually measure $\Delta q(Q^2) = \tilde{\Delta q} -\alpha_S(Q^2) \Delta G(Q^2)$, where $\alpha_S$ is the running QCD coupling constant. Thus, the $Q^2$-dependence cancels in the quark spin differences contained in $g_A(0)$ and $g_A^8(0)$ but remains in the quark spin sum $g_A^0(0)_{Q^2}$. This $Q^2$-dependence is very soft in the perturbative regime, but its evolution down to the confinement scale is not known.

  12. From neutron $\beta$-decay one can extract $g_A(0)=1.2670\pm 0.0035$ pdg. Similarly, from the $\beta$-decay of $\Xi^-$-hyperon, and the assumption of $SU(3)$ flavor symmetry lipkin,flores one obtains $g_A^8(0)=0.588\pm 0.033$ (see ref. abe98 and references therein). Instead of the axial couplings $g_A(0)$ and $g_A^8(0)$, which govern the $\beta$-decay of octet baryons in the $SU(3)$ limit, the symmetric and antisymmetric flavor octet coupling constants $D$ and $F$ are often used. The relation between both notations is $g_A(0)= F+D$, and $g_A^8(0)= 3F-D$.

  13. Particle Data Group (D.E. Groom), Eur. Phys. J. C 15, 1 (2000).

    Google Scholar 

  14. H.J. Lipkin, Phys. Lett. B 214, 429 (1988).

    Article  ADS  Google Scholar 

  15. R. Flores-Mendieta, E. Jenkins, A.V. Manohar, Phys. Rev. D 58, 094028 (1996).

    Article  ADS  Google Scholar 

  16. D. Barquilla-Cano, A.J. Buchmann, E. Hernández, Nucl. Phys. A 714, 611 (2003).

    Article  ADS  Google Scholar 

  17. A. Buchmann, E. Hernández, K. Yazaki, Nucl. Phys. A 569, 661 (1994).

    Article  ADS  Google Scholar 

  18. For a derivation of the Goldberger-Treiman relation from the PCAC condition see, T. Ericson, W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988).

  19. The pion-quark coupling constant $g_{\pi q}$ is fixed by the empirical pion-nucleon constant1.5pt $g_{\pi N}$ via $g_{\pi q}=\frac{3}{5}\, \frac{m_q}{M_N} \, g_{\pi N}$. With $g_{\pi N}= 13.1$, $m_q=313$MeV and $M_N=939$MeV, one obtains $g_{\pi q}=2.62$ and then from eq. (gaq), with $f_{\pi}=93$MeV, $g_{Aq}=0.77$.

  20. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984).

    Article  ADS  Google Scholar 

  21. The fields $\Phi_1$, $\Phi_2$, $\Phi_3$ correspond to the isovector $\pi$ fields, and $\Phi_8$ ($\Phi_0$) to the isoscalar $\eta_8$ ($\eta_0$) fields from which the physical $\eta$ and $\eta'$ fields are constructed by mixing nuclth.

  22. D. Barquilla-Cano, A.J. Buchmann, E. Hernández, Nucl. Phys. A 721, 429c (2003)

    Article  Google Scholar 

  23. H. Yabu, M. Takizawa, W. Weise, Z. Phys. A 345, 193 (1993).

    Article  Google Scholar 

  24. S. Weinberg, Phys. Rev. Lett. 67, 3473 (1991).

    Article  ADS  Google Scholar 

  25. S. Peris, E. de Rafael, Phys. Lett. B 309, 389 (1993)

    Article  ADS  Google Scholar 

  26. W. Broniowski, M. Lutz, A. Steiner, Phys. Rev. Lett. 71, 1787 (1993)

    Article  ADS  Google Scholar 

  27. H. Leutwyler, Nucl. Phys. B (Proc. Suppl.) 64, 223 (1998)

    Article  ADS  Google Scholar 

  28. Th. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000)

    Article  ADS  Google Scholar 

  29. M. Napsuciale, A. Wirzba, M. Kirchbach, Nucl. Phys. A 703, 306 (2002).

    Article  ADS  MATH  Google Scholar 

  30. T.P. Cheng, N.I. Kochelev, V. Vento, Mod. Phys. Lett. A 14, 205 (1999).

    Article  ADS  Google Scholar 

  31. S. Narison, G.M. Shore, G. Veneziano, Nucl. Phys. B 546, 235 (1999)

    Article  ADS  Google Scholar 

  32. G. Morpurgo, Phys. Rev. D 9, 3111 (1989).

    Article  ADS  Google Scholar 

  33. A.J. Buchmann, E.M. Henley, Phys. Lett. B 484, 255 (2000).

    Article  ADS  Google Scholar 

  34. S.-L. Zhu, Phys. Rev. C 61, 065205 (2000).

    Article  ADS  Google Scholar 

  35. M. Kirchbach, H.J. Weber, Comments Nucl. Part. Phys. 22, 171 (1998).

    Google Scholar 

  36. J.C. Peng, Proceedings of the LAMPF Workshop on Photon and Neutral Meson Physics at Intermediate Energies-LA-11177-C, Los Alamos, NM, Jan. 7-9, 1987, edited by H.W. Baer (Los Alamos National Laboratory, 1987).

  37. Q. Zhao, Phys. Rev. C 63, 035205 (2001).

    Article  ADS  Google Scholar 

  38. M. Dugger, J.P. Ball, P. Collins, E. Pasyuk, B.G. Ritchie, Phys. Rev. Lett. 96, 062001 (2006).

    Article  ADS  Google Scholar 

  39. Although the evolution of $g_A^0(0)_{\mu^2}$ into the confinement region is not known we compare our quark model result with data taken at the renormalization scale $\mu^2=Q^2=3$(GeV/c)^2.

  40. T.P. Cheng, L.-F. Li, Phys. Rev. Lett. 74, 2872 (1995)

    Article  ADS  Google Scholar 

  41. A similar conclusion concerning the redistribution from quark spin to orbital angular momentum was reached in ref. cheng.

  42. A.J. Buchmann, E. Hernández, A. Fäßler, Phys. Rev. C 55, 448 (1997).

    Article  ADS  Google Scholar 

  43. A.J. Buchmann, E.M. Henley, Phys. Rev. C 63, 015202 (2001).

    Article  ADS  Google Scholar 

  44. D. Singleton, Phys. Lett. B 427, 155 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barquilla-Cano, D., Buchmann, A.J. & Hernández, E. Axial exchange currents and nucleon spin. Eur. Phys. J. A 27, 365–372 (2006). https://doi.org/10.1140/epja/i2005-10270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10270-4

PACS.

Navigation