Skip to main content
Log in

Bound-state versus collective-coordinate approaches in chiral soliton models and the width of the Θpentaquark

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We thoroughly compare the bound-state and rigid-rotator approaches to three-flavored chiral solitons. We establish that these two approaches yield identical results for the baryon spectrum and kaon-nucleon S-matrix in the limit that the number of colors (NC) tends to infinity. After proper subtraction of the background phase shift the bound-state approach indeed exhibits a clear resonance behavior in the strangeness S = + 1 channel. We present a first dynamical calculation of the widths of the Θ+ and Θ* pentaquarks for finite NC in a chiral soliton model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Manohar, Nucl. Phys. B 248, 19 (1984).

    Article  ADS  Google Scholar 

  2. L.C. Biedenharn, Y. Dothan, (1984), Print-84-1039 (DUKE).

  3. M. Chemtob, Nucl. Phys. B 256, 600 (1985).

    Article  ADS  Google Scholar 

  4. M. Praszałowicz, Su(3) skyrmion, in Skyrmions and Anomalies, edited by M. Jezabek, M. Prasałowicz (World Scientific, 1987) p. 112.

  5. H. Walliser, An extension of the standard Skyrme model, in Baryons as Skyrme Solitons, edited by G. Holzwarth (World Scientific, 1994) p. 247.

  6. H. Walliser, Nucl. Phys. A 548, 649 (1992).

    Article  ADS  Google Scholar 

  7. LEPS (T. Nakano ), Phys. Rev. Lett. 91, 012002 (2003), hep-ex/0301020.

    Article  Google Scholar 

  8. K. Hicks, J. Phys. Conf. Ser. 9, 183 (2005), hep-ex/0412048.

    Article  ADS  Google Scholar 

  9. S. Kabana, AIP Conf. Proc. 756, 195 (2005), hep-ex/0503020.

    Article  ADS  Google Scholar 

  10. D. Diakonov, V. Petrov, M.V. Polyakov, Z. Phys. A 359, 305 (1997), hep-ph/9703373.

    Article  Google Scholar 

  11. M. Praszałowicz, Phys. Lett. B 583, 96 (2004), hep-ph/0311230.

    Article  ADS  Google Scholar 

  12. M. Praszałowicz, Acta Phys. Pol. B 35, 1625 (2004), hep-ph/0402038.

    ADS  Google Scholar 

  13. R.L. Jaffe, Eur. Phys. J. C 35, 221 (2004), hep-ph/0401187.

    Article  ADS  Google Scholar 

  14. G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983).

    Article  ADS  Google Scholar 

  15. M. Uehara, Prog. Theor. Phys. 75, 212 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Saito, Prog. Theor. Phys. 78, 746 (1987).

    Article  ADS  Google Scholar 

  17. G. Holzwarth, A. Hayashi, B. Schwesinger, Phys. Lett. B 191, 27 (1987).

    Article  ADS  Google Scholar 

  18. H. Verschelde, Phys. Lett. B 209, 34 (1988).

    Article  ADS  Google Scholar 

  19. D. Diakonov, V.Y. Petrov, P.V. Pobylitsa, Phys. Lett. B 205, 372 (1988).

    Article  ADS  Google Scholar 

  20. G. Holzwarth, Phys. Lett. B 241, 165 (1990).

    Article  ADS  Google Scholar 

  21. G. Holzwarth, G. Pari, B.K. Jennings, Nucl. Phys. A 515, 665 (1990).

    Article  ADS  Google Scholar 

  22. A. Hayashi, S. Saito, M. Uehara, Phys. Lett. B 246, 15 (1990)

    Article  ADS  Google Scholar 

  23. N. Dorey, J. Hughes, M.P. Mattis, Phys. Rev. D 50, 5816 (1994), hep-ph/9404274.

    Article  ADS  Google Scholar 

  24. G. Holzwarth (Editor), Baryons as Skyrme Solitons (World Scientific, 1994).

  25. H. Walliser, G. Eckart, Nucl. Phys. A 429, 514 (1984).

    Article  ADS  Google Scholar 

  26. A. Hayashi, G. Eckart, G. Holzwarth, H. Walliser, Phys. Lett. B 147, 5 (1984).

    Article  ADS  Google Scholar 

  27. M. Karliner, M.P. Mattis, Phys. Rev. D 34, 1991 (1986).

    Article  ADS  Google Scholar 

  28. B. Schwesinger, H. Weigel, G. Holzwarth, A. Hayashi, Phys. Rep. 173, 173 (1989).

    Article  ADS  Google Scholar 

  29. C. Callan, I. Klebanov, Nucl. Phys. B 262, 365 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Guadagnini, Nucl. Phys. B 236, 35 (1984).

    Article  ADS  Google Scholar 

  31. H. Weigel, Int. J. Mod. Phys. A 11, 2419 (1996), hep-ph/9509398.

    Article  ADS  Google Scholar 

  32. N. Itzhaki, I.R. Klebanov, P. Ouyang, L. Rastelli, Nucl. Phys. B 684, 264 (2004), hep-ph/0309305.

    Article  ADS  MathSciNet  Google Scholar 

  33. T.D. Cohen, Phys. Lett. B 581, 175 (2004), hep-ph/0309111

    Article  ADS  Google Scholar 

  34. A. Cherman, T.D. Cohen, T.R. Dulaney, E.M. Lynch, hep-ph/0509129.

  35. A. Hayashi, G. Holzwarth, Phys. Lett. B 140, 175 (1984).

    Article  ADS  Google Scholar 

  36. C. Hajduk, B. Schwesinger, Phys. Lett. B 140, 172 (1984).

    Article  ADS  Google Scholar 

  37. J. Schechter, H. Weigel, Phys. Rev. D 44, 2916 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Weigel, Eur. Phys. J. A 2, 391 (1998), hep-ph/9804260.

    Article  ADS  Google Scholar 

  39. H. Weigel, Eur. Phys. J. A 21, 133 (2004), hep-ph/0404173.

    Article  ADS  Google Scholar 

  40. B. Schwesinger, Nucl. Phys. A 537, 253 (1992).

    Article  ADS  Google Scholar 

  41. J.R. Ellis, M. Karliner, M. Praszałowicz, JHEP 05, 002 (2004), hep-ph/0401127.

    Article  ADS  Google Scholar 

  42. M. Praszałowicz, K. Goeke, Acta Phys. Pol. B 36, 2255 (2005), hep-ph/0506041.

    ADS  Google Scholar 

  43. T.H.R. Skyrme, Proc. R. Soc. London, Ser. A 260, 127 (1961)

    MATH  MathSciNet  Google Scholar 

  44. E. Witten, Nucl. Phys. B 223, 422

  45. G. 't Hooft, Nucl. Phys. B 72, 461 (1974).

    Article  ADS  Google Scholar 

  46. E. Witten, Nucl. Phys. B 160, 57 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Weigel, J. Schechter, N.W. Park, U.-G. Meißner, Phys. Rev. D 42, 3177 (1990).

    Article  ADS  Google Scholar 

  48. C. Callan, K. Hornbostel, I. Klebanov, Phys. Lett. B 202, 296 (1988).

    Article  MathSciNet  Google Scholar 

  49. I. Klebanov, Strangeness in the standard Skyrme model, in Hadrons and Hadronic Matter, edited by D. Vautherin, J. Negele, F. Lenz (Plenum Press, 1989) p. 223.

  50. F. Meier, H. Walliser, Phys. Rep. 289, 383 (1997), hep-ph/9602359.

    Article  ADS  Google Scholar 

  51. H. Walliser, Nucl. Phys. A 524, 706 (1991).

    Article  ADS  Google Scholar 

  52. M.P. Mattis, M. Mukherjee, Phys. Rev. Lett. 61, 1344 (1988).

    Article  ADS  Google Scholar 

  53. J.P. Blaizot, M. Rho, N.N. Scoccola, Phys. Lett. B 209, 27 (1988).

    Article  ADS  Google Scholar 

  54. C.L. Schat, N.N. Scoccola, C. Gobbi, Nucl. Phys. A 585, 627 (1995), hep-ph/9408360.

    Article  ADS  Google Scholar 

  55. H. Weigel, H. Reinhardt, R. Alkofer, Phys. Lett. B 313, 377 (1993), hep-ph/9304314.

    Article  ADS  Google Scholar 

  56. V.B. Kopeliovich, private communication.

  57. S. Okubo, Prog. Theor. Phys. 27, 949 (1962).

    Article  ADS  MATH  Google Scholar 

  58. M. Gell-Mann, Y. Ne'eman, The Eightfold Way (Benjamin, New York, 1964).

  59. H. Walliser, V.B. Kopeliovich, J. Exp. Theor. Phys. 97, 433 (2003), hep-ph/0304058.

    Article  Google Scholar 

  60. H. Yabu, K. Ando, Nucl. Phys. B 301, 601 (1988).

    Article  ADS  Google Scholar 

  61. N.W. Park, J. Schechter, H. Weigel, Phys. Lett. B 224, 171 (1989).

    Article  ADS  Google Scholar 

  62. N.W. Park, J. Schechter, H. Weigel, Phys. Lett. B 228, 420 (1989)

    Article  ADS  Google Scholar 

  63. B. Schwesinger, H. Weigel, Nucl. Phys. A 540, 461 (1992).

    Article  ADS  Google Scholar 

  64. E. Jenkins, A.V. Manohar, Phys. Rev. Lett. 93, 022001 (2004), hep-ph/0401190

    Article  ADS  Google Scholar 

  65. A. Kanazawa, Prog. Theor. Phys. 77, 1240 (1987).

    Article  ADS  Google Scholar 

  66. M. Aguilar-Benitez , Phys. Lett. B 170, 1 (1986).

    Google Scholar 

  67. J.S. Hyslop, R.A. Arndt, L.D. Roper, R.L. Workman, Phys. Rev. D 46, 961 (1992).

    Article  ADS  Google Scholar 

  68. T.D. Cohen, Comment on the Walliser-Weigel approach to exotic baryons in chiral soliton models, arXiv:hep-ph/0511174.

  69. H. Walliser, H. Weigel, Reply to Cohen's comment on the rotation-vibration coupling in chiral soliton models, arXiv:hep-ph/0511297.

  70. P.A.M. Dirac, Can. J. Math. 2, 129 (1950).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Weigel.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walliser, H., Weigel, H. Bound-state versus collective-coordinate approaches in chiral soliton models and the width of the Θpentaquark. Eur. Phys. J. A 26, 361–382 (2005). https://doi.org/10.1140/epja/i2005-10180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10180-5

PACS.

Navigation