Skip to main content

A new determination of the γπ → ππ anomalous amplitude via πe- → π-e-π0 data

Abstract.

We discuss the reaction π-e- → π-e-π0 with the purpose of obtaining information on the γπ → ππ anomalous amplitude \( \cal {F}\). We compare a full calculation at \( \cal {O}\)(p6) in chiral perturbation theory and various phenomenological predictions with the existing data of Amendolia et al. By integrating our theory results using Monte Carlo techniques, we obtain σ = 2.05 nb at \( \cal {O}\)(p6) and σ = 2.17 nb after including the dominant electromagnetic correction. Both results are in good agreement with the experimental cross-section of σ = (2.11±0.47) nb. On the basis of the ChPT results one would extract from the experimental cross-section as amplitudes \( \cal {F}\)(0)extr = (9.9±1.1) GeV-3 and \( \cal {F}\)(0)extr = (9.6±1.1) GeV-3, respectively, which have to be compared with the low-energy theorem \( \cal {F}\) = e/(4π2Fπ3) = 9.72GeV-3. We emphasize the need for new data to allow for a comparison of experimental and theoretical distributions and to obtain \( \cal {F}\) with smaller uncertainty.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S.L. Adler, Phys. Rev. 177, 2426 (1969).

    Article  Google Scholar 

  2. 2

    S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517 (1969).

    Article  Google Scholar 

  3. 3

    W.A. Bardeen, Phys. Rev. 184, 1848 (1969).

    Article  Google Scholar 

  4. 4

    J.S. Bell, R. Jackiw, Nuovo Cimento A 60, 47 (1969).

    Google Scholar 

  5. 5

    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971).

    Article  Google Scholar 

  6. 6

    E. Witten, Nucl. Phys. B 223, 422 (1983).

    Article  Google Scholar 

  7. 7

    S. Weinberg, Physica A 96, 327 (1979)

    Google Scholar 

  8. 8

    A. Pich, Rep. Prog. Phys. 58, 563 (1995)

    Article  Google Scholar 

  9. 9

    S. Scherer, in Advances in Nuclear Physics, edited by J.W. Negele, E.W. Vogt, Vol. 27 (Kluwer Academic/Plenum Publishers, New York, 2003).

  10. 10

    O. Bär, U.-J. Wiese, Nucl. Phys. B 609, 225 (2001).

    Article  Google Scholar 

  11. 11

    R.N. Rogalyov, hep-ph/0202046.

  12. 12

    B. Borasoy, E. Lipartia, Phys. Rev. D 71, 014027 (2005).

    Article  Google Scholar 

  13. 13

    S. Eidelman, Phys. Lett. B 592, 1 (2004).

    Article  Google Scholar 

  14. 14

    J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. Lett. 55, 2766 (1985).

    Article  PubMed  Google Scholar 

  15. 15

    J. Bijnens, A. Bramon, F. Cornet, Phys. Rev. Lett. 61, 1453 (1988).

    Article  PubMed  Google Scholar 

  16. 16

    B. Moussallam, Phys. Rev. D 51, 4939 (1995).

    Article  Google Scholar 

  17. 17

    B. Ananthanarayan, B. Moussallam, JHEP 0205, 052 (2002).

    Article  Google Scholar 

  18. 18

    N.F. Nasrallah, Phys. Rev. D 66, 076012 (2002).

    Article  Google Scholar 

  19. 19

    J.L. Goity, A.M. Bernstein, B.R. Holstein, Phys. Rev. D 66, 076014 (2002).

    Article  Google Scholar 

  20. 20

    A. Gasparian , Conceptional design report A Precision Measurement of the Neutral Pion Lifetime via the Primakoff Effect, url: http://www.jlab.org/primex.

  21. 21

    M.V. Terent’ev, Phys. Lett. B 38, 419 (1972).

    Article  Google Scholar 

  22. 22

    Yu. M. Antipov , Phys. Rev. D 36, 21 (1987).

    Article  Google Scholar 

  23. 23

    G. Baum (COMPASS Collaboration), Proposal for a Common Muon and Proton Apparatus for Structure and Spectroscopy, CERN-SPSLC 96-14, SPSC/P 297

  24. 24

    M.A. Moinester, V. Steiner, Primakoff physics for CERN COMPASS hadron beam: Hadron polarizabilities, hybrid mesons, chiral anomaly, meson radiative transitions, contributed to Charles U./JINR and International U. (Dubna) CERN COMPASS Summer School, August 1997, Prague, Czech Republic, hep-ex/9801011.

  25. 25

    M.A. Moinester (COMPASS Collaboration), Pion and kaon polarizabilities at CERN COMPASS, contributed to Advanced Study Institute on Symmetries and Spin (Praha SPIN 2002), Prague, Czech Republic, 14-27 July 2002, Czech. J. Phys. 53, B169 (2003), hep-ex/0301024.

  26. 26

    M.A. Moinester, Hybrid Meson Production via Pion Scattering from the Nuclear Coulomb Field, Proceedings of the ‘‘Future Physics at COMPASS’’ Workshop, Geneva, Switzerland, September 2002, CERN Yellow Report 2004-011, http://wwwcompass.cern.ch/compass/ publications/2004\_yellow/, hep-ex/0301023.

  27. 27

    J. Bijnens, A. Bramon, F. Cornet, Z. Phys. C 46, 599 (1990).

    Article  Google Scholar 

  28. 28

    J. Bijnens, A. Bramon, F. Cornet, Phys. Lett. B 237, 488 (1990).

    Article  Google Scholar 

  29. 29

    J. Bijnens, Int. J. Mod. Phys. A 8, 3045 (1993).

    Article  Google Scholar 

  30. 30

    D. Issler, SLAC-PUB-4943-REV (1990) (unpublished)

  31. 31

    T. Ebertshäuser, H.W. Fearing, S. Scherer, Phys. Rev. D 65, 054033 (2002).

    Article  Google Scholar 

  32. 32

    J. Bijnens, L. Girlanda, P. Talavera, Eur. Phys. J. C 23, 539 (2002).

    Google Scholar 

  33. 33

    B.R. Holstein, Phys. Rev. D 53, 4099 (1996).

    Article  Google Scholar 

  34. 34

    T. Hannah, Nucl. Phys. B 593, 577 (2001).

    Article  Google Scholar 

  35. 35

    L. Ametller, M. Knecht, P. Talavera, Phys. Rev. D 64, 094009 (2001).

    Article  Google Scholar 

  36. 36

    T.N. Truong, Phys. Rev. D 65, 056004 (2002).

    Article  Google Scholar 

  37. 37

    R. Alkofer, C.D. Roberts, Phys. Lett. B 369, 101 (1996)

    Article  Google Scholar 

  38. 38

    M.A. Moinester, in Proceedings of the International Conference On Physics With GeV Particle Beams, 22-25 August 1994, Jülich, Germany, edited by H. Machner, K. Sistemich (World Scientific, Singapore, 1995) hep-ph/9409307.

  39. 39

    R.A. Miskimen, K. Wang, A. Yegneswaran (spokespersons), Thomas Jefferson National Accelerator Facility Experiment E94015, Study of the Axial Anomaly using the $\gamma \pi^+\to \pi^+\pi^0$ Reaction Near Threshold.

  40. 40

    B. Asavapibhop, Study of the Axial Anomaly in the $\gamma p \to \pi^+\pi^0 n$ Reaction at Low $t$ Using the CLAS and the Photon Tagger, PhD thesis, University of Massachusetts, Amherst, Massachusetts, 2000, http://www.jlab.org/Hall-B/clas\_g1/anomaly/.

  41. 41

    R.A. Miskimen, private communication.

  42. 42

    S.R. Amendolia , Phys. Lett. B 155, 457 (1985).

    Article  Google Scholar 

  43. 43

    R. Tenchini (CERN), private communication.

  44. 44

    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edition (Cambridge University Press, Cambridge, 1992).

  45. 45

    J.M. LoSecco, Phys. Rev. D 51, 6572 (1995).

    Article  Google Scholar 

  46. 46

    E. Byckling, K. Kajantie, Particle Kinematics (Wiley, New York, 1973).

  47. 47

    C. Unkmeir, A. Ocherashvili, T. Fuchs, M.A. Moinester, S. Scherer, Phys. Rev. C 65, 015206 (2002).

    Article  Google Scholar 

  48. 48

    G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989).

    Article  Google Scholar 

  49. 49

    G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989).

    Article  Google Scholar 

  50. 50

    T. Ebertshäuser, Mesonic Chiral Perturbation Theory: Odd Intrinsic Parity Sector, PhD Thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001, http:// archimed.uni-mainz.de/

  51. 51

    T. Fujiwara, T. Kugo, H. Terao, S. Uehara, K. Yamawaki, Prog. Theor. Phys. 73, 926 (1985).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Scherer.

Additional information

Th. Walcher

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giller, I., Ocherashvili, A., Ebertshäuser, T. et al. A new determination of the γπ → ππ anomalous amplitude via πe- → π-e-π0 data. Eur. Phys. J. A 25, 229–240 (2005). https://doi.org/10.1140/epja/i2005-10116-1

Download citation

PACS.

  • 11.30.Rd Chiral symmetries
  • 13.60.Le Meson production