Advertisement

Microcanonical studies on isoscaling

  • Ad. R. Raduta
Article

Abstract.

The exponential scaling of isotopic yields is investigated for sources of different sizes over a broad range of excitation energies and freeze-out volumes, in both primary and asymptotic stages of the decay in the framework of a microcanonical multifragmentation model. It was found that the scaling parameters have a strong dependence on the considered pair of equilibrated sources and excitation energy and are affected by the secondary particle emission of the break-up fragments. No significant influence of the freeze-out volume on the considered isotopic ratios has been observed. Deviations of microcanonical results from grandcanonical expectations are discussed.

PACS.

25.70.Pq Multifragment emission and correlations 24.10.Pa Thermal and statistical models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Xu , Phys. Rev. Lett. 85, 716 (2000).Google Scholar
  2. 2.
    M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, H.S. Xu, Phys. Rev. C 64, 041603(R) (2001). Google Scholar
  3. 3.
    J. Brzychczyk , Phys. Rev. C 47, 1553 (1993).Google Scholar
  4. 4.
    V. Volkov, Phys. Rep. 44, 93 (1978).Google Scholar
  5. 5.
    G.A. Souliotis , Phys. Rev. C 68, 024605 (2003).Google Scholar
  6. 6.
    M. Veselsky, G.A. Souliotis, M. Jandel, Phys. Rev. C 69, 044607 (2004).Google Scholar
  7. 7.
    M.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch, G. Verde, H.S. Xu, Phys. Rev. Lett. 86, 5023 (2001).Google Scholar
  8. 8.
    A.S. Botvina, O.V. Lozhkin, W. Trautmann, Phys. Rev. C 65, 044610 (2002).Google Scholar
  9. 9.
    E. Geraci , Nucl. Phys. A 732, 173 (2004).Google Scholar
  10. 10.
    D.V. Shetty, S.J. Yennello, A.S. Botvina, G.A. Souliotis, M. Jandel, E. Bell, A. Keksis, S. Soisson, B. Stein, J. Iglio, nucl-ex/0406008.Google Scholar
  11. 11.
    M.B. Tsang , Phys. Rev. C 64, 054615 (2001).Google Scholar
  12. 12.
    A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang, Phys. Rev. C 68, 051601 (2003).Google Scholar
  13. 13.
    T.X. Liu , Phys. Rev. C 69, 014603 (2004).Google Scholar
  14. 14.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).CrossRefGoogle Scholar
  15. 15.
    D.H.E. Gross, Rep. Prog. Phys. 53, 605 (1990).CrossRefGoogle Scholar
  16. 16.
    Al.H. Raduta, Ad.R. Raduta, Phys. Rev. C 65, 054610 (2002).Google Scholar
  17. 17.
    S. Albergo, S. Costa, E. Costanzo, A. Rubbino, Nuovo Cimento A 89, 1 (1985).Google Scholar
  18. 18.
    A. Majumder, S. Das Gupta, Phys. Rev. C 61, 034603 (2000).Google Scholar
  19. 19.
    W.A. Friedman, Phys. Rev. C 42, 667 (1990).Google Scholar
  20. 20.
    Al.H. Raduta, Ad.R. Raduta, Phys. Rev. C 55, 1344 (1997).Google Scholar
  21. 21.
    G. Fai, J. Randrup, Nucl. Phys. A 381, 557 (1982).Google Scholar
  22. 22.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).CrossRefGoogle Scholar
  23. 23.
    A.S. Iljinov , Nucl. Phys. A 543, 517 (1992).CrossRefGoogle Scholar
  24. 24.
    S.R. Souza , Phys. Rev. C 67, 051602(R) (2003).Google Scholar
  25. 25.
    W.P. Tan , Phys. Rev. C 68, 034609 (2003).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • Ad. R. Raduta
    • 1
  1. 1.National Institute of Nuclear Physics and EngineeringBucharestRomania

Personalised recommendations