Measurement of the πmeson polarizabilities via the γp → γπ+n reaction

Abstract.

An experiment on the radiative π{+}-meson photoproduction from the proton ( γp → γπ{+}n) was carried out at the Mainz Microtron MAMI in the kinematic region 537MeV < Eγ < 817MeV, 140°\( \theta_{{\gamma \gamma ^{\prime }}}^{{{{\rm cm}}}}\)≤180°. The π{+}-meson polarizabilities have been determined from a comparison of the data with the predictions of two different theoretical models, the first one being based on an effective pole model with pseudoscalar coupling while the second one is based on diagrams describing both resonant and nonresonant contributions. The validity of the models has been verified by comparing the predictions with the present experimental data in the kinematic region where the pion polarizability contribution is negligible ( s1 < 5mπ2) and where the difference between the predictions of the two models does not exceed 3%. In the region, where the pion polarizability contribution is substantial ( 5 < s1/mπ2 < 15, -12 < t/mπ2 < - 2), the difference \(\ensuremath{(\alpha -\beta )_{\pi^{+}}}\) of the electric (α) and the magnetic (β) polarizabilities has been determined. As a result we find \(\ensuremath{(\alpha -\beta )_{\pi^{+}}=(11.6\pm 1.5_{{\rm stat}}\pm 3.0_{{\rm syst}}\pm 0.5_{{\rm mod}})\times 10^{-4}{}{\rm fm^{3}}}\). This result is at variance with recent calculations in the framework of chiral perturbation theory.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J.F. Donoghue, B.R. Holstein, Phys. Rev. D 40, 2378 (1989)

    Google Scholar 

  2. 2

    S. Bellucci, J. Gasser, M.E. Sainio, Nucl. Phys. B 423, 80 (1994)

    Google Scholar 

  3. 3

    U. Bürgi, Nucl. Phys. B 479, 392 (1997).

    Google Scholar 

  4. 4

    A.N. Ivanov, N.I. Troitskaya, M. Nagy, Mod. Phys. Lett. A 7, 1997 (1992).

    Google Scholar 

  5. 5

    L.V. Fil’kov, I. Guiasu, E.E. Radescu, Phys. Rev. D 26, 3146 (1982).

    Google Scholar 

  6. 6

    L.V. Fil’kov, V.L. Kashevarov, Eur. Phys. J. A 5, 285 (1999).

    Google Scholar 

  7. 7

    V.A. Petrun’kin, Sov. J. Part. Nucl. 12, 278 (1981)

    Google Scholar 

  8. 8

    V. Bernard, B. Hiller, W. Weise, Phys. Lett. B 205, 16 (1988).

    Google Scholar 

  9. 9

    M.A. Ivanov, T. Mizutani, Phys. Rev. D 45, 1580 (1992).

    Google Scholar 

  10. 10

    Yu.M. Antipov, Phys. Lett. B 121, 445 (1983).

    Google Scholar 

  11. 11

    T.A. Aybergenov, Sov. Phys.-Lebedev Inst. Rep. 6, 32 (1984)

    Google Scholar 

  12. 12

    D. Babusci, Phys. Lett. B 277, 158 (1992).

    Google Scholar 

  13. 13

    PLUTO Collaboration (C. Berger), Z. Phys. C 26, 199 (1984).

    Google Scholar 

  14. 14

    DM1 Collaboration (A. Courau), Nucl. Phys. B 271, 1 (1986).

    Google Scholar 

  15. 15

    DM2 Collaboration (Z. Ajaltoni), in Proceedings of the VII International Workshop on Photon-Photon Collisions, Paris, 1-5 April 1986, edited by A. Courau, P. Kessler (World Scientific, Singapore, 1986).

  16. 16

    MARK II Collaboration (J. Boger), Phys. Rev. D 42, 1350 (1990).

    Google Scholar 

  17. 17

    Crystal Ball Collaboration (H. Marsiske), Phys. Rev. D 41, 3324 (1990).

    Google Scholar 

  18. 18

    F. Donoghue, B. Holstein, Phys. Rev. D 48, 137 (1993).

    Google Scholar 

  19. 19

    A.E. Kaloshin, V.V. Serebrykov, Z. Phys. C 64, 689 (1994)

    Google Scholar 

  20. 20

    J. Portolés, M.R. Pennington, The Second $DA\phi NE$ Physics Handbook, edited by L. Maiani, G. Pancheri, N. Paver, Vol. 2 (SIS-Frascati, 1995) p. 579, hep-ph/9407295.

  21. 21

    J. Boyer, Phys. Rev. D 42, 1350 (1990).

    Google Scholar 

  22. 22

    V.A. Petrun’kin, Sov. J. JETP 13, 808 (1961)

    Google Scholar 

  23. 23

    A. Klein, Phys. Rev. 99, 998 (1955).

    MATH  Google Scholar 

  24. 24

    H.F. Jones, M.D. Scadron, Nucl. Phys. B 10, 71 (1969).

    Google Scholar 

  25. 25

    L.V. Fil’kov, Sov. J. Nucl. Phys. 41, 636 (1985).

    Google Scholar 

  26. 26

    D. Drechsel, L.V. Fil’kov, Z. Phys. A 349, 177 (1994).

    Google Scholar 

  27. 27

    E. Byckling, K. Kajantie, Particle Kinematics (Wiley, New York, 1973).

  28. 28

    L.V. Fil’kov, Proc. Lebedev Phys. Inst. 41, 1 (1967).

    Google Scholar 

  29. 29

    T.A. Aybergenov, Proc. Lebedev Phys. Inst. 186, 169 (1988).

    Google Scholar 

  30. 30

    Th. Walcher, in Chiral Dynamics: Theory and Experiment III, Proceedings from the Institute for Nuclear Theory, Vol. 11 (World Scientific, 2000) p. 296.

  31. 31

    G. Goebel, Phys. Rev. Lett. 1, 337 (1958)

    Google Scholar 

  32. 32

    T.A. Aybergenov, Sov. Phys.-Lebedev Inst. Rep. 5, 28 (1982).

    Google Scholar 

  33. 33

    J. Ahrens, Few-Body Syst. Suppl. 9, 449 (1995).

    Google Scholar 

  34. 34

    J. Ahrens, Preprint of Lebedev Phys. Inst. No. 52 (1996).

  35. 35

    Ch. Unkmeir, PhD Thesis, Mainz University (2000).

  36. 36

    Th. Walcher, Prog. Part. Nucl. Phys. 24, 189 (1990).

    Article  Google Scholar 

  37. 37

    J. Ahrens, Nucl. Phys. News 4, 5 (1994).

    MATH  Google Scholar 

  38. 38

    I. Anthony, Nucl. Instrum. Methods A 301, 230 (1991).

    Google Scholar 

  39. 39

    S. Hall, Nucl. Instrum. Methods A 368, 698 (1996).

    Google Scholar 

  40. 40

    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).

    Google Scholar 

  41. 41

    A.R. Gabler, Nucl. Instrum. Methods A 346, 168 (1994).

    Google Scholar 

  42. 42

    P. Grabmayr, Nucl. Instrum. Methods A 402, 85 (1998).

    Google Scholar 

  43. 43

    D. Krambrich, Dipolomarbeit, Institut für Kernphysik, Mainz (2001).

  44. 44

    R. Leukel, PhD Thesis, Mainz University (2001).

  45. 45

    R. Brun, GEANT, Cern/DD/ee/84-1, 379 (1986).

  46. 46

    N.R. Stanton, Ohio State University Report C00-1545-92 (1971).

  47. 47

    W. Langgärtner, Phys. Rev. Lett. 87, 052001 (2001).

    Article  Google Scholar 

  48. 48

    A. Braghieri, Phys. Lett. B 363, 46 (1995).

    Article  Google Scholar 

  49. 49

    J. Caselotti, PhD Thesis, Mainz University (2002).

  50. 50

    I. Giller, PhD Thesis, Tel Aviv University (2004).

  51. 51

    S.N. Dymov, V.S. Kurbatov, I.N. Silin, S.V. Yaschenko, Nucl. Instrum. Methods A 440, 431 (2000).

    Google Scholar 

  52. 52

    M.V. Terentev, Sov. J. Nucl. Phys. 16, 87 (1973).

    Google Scholar 

  53. 53

    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

    Google Scholar 

  54. 54

    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).

    Article  Google Scholar 

  55. 55

    E. Frlez, hep-ex/0312029.

  56. 56

    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, M.E. Sainio, Phys. Lett. B 374, 210 (1996).

    Google Scholar 

  57. 57

    J. Bijnens, P. Talavera, Nucl. Phys. B 489, 387 (1997).

    Google Scholar 

  58. 58

    C.Q. Geng, I.L. Ho, T.H. Wu, Nucl. Phys. B 684, 281 (2004).

    Google Scholar 

  59. 59

    S. Scherer, H.W. Fearing, Phys. Rev. C 51, 359 (1995).

    Google Scholar 

  60. 60

    H.W. Fearing, S. Scherer, Phys. Rev. C 62, 034003 (2000).

    Google Scholar 

  61. 61

    I. Blomquist, J.M. Laget, Nucl. Phys. A 280, 405 (1977).

    Google Scholar 

  62. 62

    S.P. Baranov, A.A. Shikanyan, Sov. J. Nucl. Phys. 46, 1068 (1988).

    Google Scholar 

  63. 63

    R. Prange, Phys. Rev. 110, 240 (1958).

    Google Scholar 

  64. 64

    A.C. Hearn, Nuovo Cimento 21, 333 (1961).

    MATH  Google Scholar 

  65. 65

    S.P. Baranov, Phys. At. Nucl. 60, 1322 (1997).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

M. Garçon

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahrens, J., Alexeev, V.M., Annand, J.R.M. et al. Measurement of the πmeson polarizabilities via the γp → γπ+n reaction. Eur. Phys. J. A 23, 113–127 (2005). https://doi.org/10.1140/epja/i2004-10056-2

Download citation

PACS.

  • 12.38.Qk Experimental tests
  • 13.40.-f Electromagnetic processes and properties
  • 13.60.Le Meson production