Skip to main content
Log in

Effect of resonant continuum on pairing correlations in the relativistic approach

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

A proper treatment of the resonant continuum is to take account of not only the energy of the resonant state, but also its width. The effect of resonant states on pairing correlations is presented in the framework of the relativistic mean-field theory plus Bardeen-Cooper-Schrieffer (BCS) approximation with a constant pairing strength. The study is performed in an effective Lagrangian with the parameter set NL3 for neutron-rich even-even Ni isotopes. Results show that the contribution of the proper treatment of the resonant continuum to pairing correlations for those nuclei close to the neutron drip line is important. The pairing gaps, Fermi energies, pairing correlation energies, and binding energies are considerably affected by a proper consideration of the width of resonant states. The problem of unphysical particle gas, which may appear in the calculation of the traditional mean field plus BCS method for nuclei in the vicinity of the drip line could be well overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring, Prog. Part. Nucl. Phys. 37, 197 (1996).

    Article  Google Scholar 

  2. J. Dobaczewski, W. Nazarewicz, Philos. Trans. R. Soc. London, Ser. A 356, 2007 (1998).

    Google Scholar 

  3. T.T.S. Kuo, F. Krmpotic, Y. Tzeng, Phys. Rev. Lett. 78, 2708 (1997).

    Article  Google Scholar 

  4. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996).

    Article  Google Scholar 

  5. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).

  6. Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, Yong Zhou, Phys. Rev. C 65, 064305 (2002).

    Article  Google Scholar 

  7. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984).

    Article  Google Scholar 

  8. H. Kucharek, P.Ring, Z. Phys. A 339, 23 (1991).

    Google Scholar 

  9. N. Sandulescu, R.J. Liotta, R. Wyss, Phys. Lett. B 394, 6 (1997).

    Article  Google Scholar 

  10. N. Sandulescu, Nguyen Van Giai, R.J. Liotta, Phys. Rev. C 61, 061301(R) (2000).

    Article  Google Scholar 

  11. A.T. Kruppa, P.H. Heenen, R.J. Liotta, Phys. Rev. C 63 044324 (2001).

    Google Scholar 

  12. N. Sandulescu, L.S. Geng, H. Toki, G. Hillhouse, Phys. Rev. C 68 054323 (2003).

    Google Scholar 

  13. Li-Gang Cao, Zhong-Yu Ma, Phys. Rev. C 66, 024311 (2002).

    Article  Google Scholar 

  14. M. Del Estal, M. Centelles, X. Viñas, S.K. Patra, Phys. Rev. C 63, 044321 (2001).

    Article  Google Scholar 

  15. G.A. Lalazissis, J.König, P.Ring, Phys. Rev. C 55, 540 (1997).

    Article  Google Scholar 

  16. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  Google Scholar 

  17. Zhong-yu Ma, A. Wandelt, N.V. Giai, D. Vretenar, P. Ring, Nucl. Phys. A 686, 173 (2001).

    Article  Google Scholar 

  18. Zhong-yu Ma, A. Wandelt, N.V. Giai, D. Vretenar, P. Ring, Li-gang Cao, Nucl. Phys. A 703, 222 (2002).

    Article  Google Scholar 

  19. P. Ring, Zhong-yu Ma, N.V. Giai, A. Wandelt, D. Vretenar, Li-gang Cao, Nucl. Phys. A 694, 249 (2001).

    Article  MATH  Google Scholar 

  20. Li-Gang Cao, Zhong-Yu Ma, Chin. Phys. Lett. 20, 1459 (2003).

    Article  Google Scholar 

  21. C.J. Horowitz, B.D. Serot, Nucl. Phys. A 368, 503 (1981).

    Article  Google Scholar 

  22. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  23. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977).

    Article  Google Scholar 

  24. M. Grasso, N. Sandulescu, Nguyen Van Giai, R.J. Liotta, Phys. Rev. C 64, 064321 (2001).

    Article  Google Scholar 

  25. W. Greiner, Relativistic Quantum Mechanics - Wave Equation (Springer-Verlag, 1997).

  26. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984).

    Article  Google Scholar 

  27. J. Meng, Phys. Rev. C 57, 1229 (1998).

    Article  Google Scholar 

  28. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  Google Scholar 

  29. G.A. Lalazissis, D. Vretenar, P. Ring, Phys. Rev. C 57, 2294 (1998).

    Article  Google Scholar 

  30. M.M. Sharma, A.R. Farhan, S. Mythili, Phys. Rev. C 61, 054306 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Gang Cao.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, LG., Ma, ZY. Effect of resonant continuum on pairing correlations in the relativistic approach. Eur. Phys. J. A 22, 189–197 (2004). https://doi.org/10.1140/epja/i2004-10029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10029-5

Keywords

Navigation