Skip to main content
Log in

Light clusters in nuclear matter of finite temperature

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

We investigate properties and the distribution of light nuclei (A≤4) in symmetric nuclear matter of finite temperature within a microscopic framework. For this purpose we have solved few-body Alt-Grassberger-Sandhas-type equations for quasi-nucleons that include self-energy corrections and Pauli blocking in a systematic way. In a statistical model we find a significant influence in the composition of nuclear matter if medium effects are included in the microscopic calculation of nuclei. If multiplicities are frozen out at a certain time (or volume), we expect significant consequences for the formation of light fragments in a heavy ion collision. As a consequence of the systematic inclusion of medium effects, the ordering of multiplicities becomes opposite to the law-of-mass action of ideal components. This is necessary to explain the large abundance of α-particles in a heavy ion collision that are otherwise largely suppressed in an ideal equilibrium scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991).

    Article  Google Scholar 

  2. P. Danielewicz, Q. Pan, Phys. Rev. C 46, 2002 (1992).

    Article  Google Scholar 

  3. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986).

    Article  Google Scholar 

  4. C. Fuchs, H.H. Wolter, Nucl. Phys. A 589, 732 (1995).

    Article  Google Scholar 

  5. M. Beyer, C. Kuhrts, G. Röpke, P.D. Danielewicz, Phys. Rev. C 63, 034605 (2001).

    Article  Google Scholar 

  6. J. Aichelin, Phys. Rep. 202, 233 (1991).

    Article  Google Scholar 

  7. G. Peilert , Phys. Rev. C 46, 1457 (1992).

    Article  Google Scholar 

  8. R. Nebauer, J. Aichelin, Nucl. Phys. A 650, 65 (1999)

    Article  Google Scholar 

  9. INDRA Collaboration (D. Gorio ), Eur. Phys. J. A 7, 245 (2000), and references therein.

    Google Scholar 

  10. INDRA Collaboration (S. Hudan ), Phys. Rev. C 67, 064613 (2003).

    Article  Google Scholar 

  11. INDRA Collaboration (B. Borderie ), Phys. Lett. B 388, 224 (1996).

    Article  Google Scholar 

  12. INDRA Collaboration (B. Borderie ), Phys. Lett. B 353, 27 (1995).

    Article  Google Scholar 

  13. A.Z. Mekjan, Phys. Rev. C 17, 1051 (1978).

    Article  Google Scholar 

  14. R.K. Tripathi, L.W. Townsend, Phys. Rev. C 50, R7 (1994).

  15. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).

    Article  Google Scholar 

  16. M. Beyer, W. Schadow, C. Kuhrts, G. Röpke, Phys. Rev. C 60, 034004 (1999).

    Article  Google Scholar 

  17. M. Beyer, S.A. Sofianos, C. Kuhrts, G. Röpke, P. Schuck, Phys. Lett. B 488, 247 (2000).

    Article  Google Scholar 

  18. Chr. Kuhrts, PhD Thesis: ‘‘Deuteron production in heavy ion reactions’’, Rostock, 2000.

  19. For a textbook treatment see, e.g., L.P. Kadanoff, G. Baym, Quantum Theory of Many-Particle Systems (Mc Graw-Hill, New York, 1962)

  20. See, e.g., J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998).

    Article  Google Scholar 

  21. M. Beyer, G. Röpke, A. Sedrakian, Phys. Lett. B 376, 7 (1996).

    Article  Google Scholar 

  22. J. Eichler, T. Marumori, K. Takada, Prog. Theor. Phys. 40, 60 (1968).

    Google Scholar 

  23. P. Schuck, F. Villars, P. Ring, Nucl. Phys. A 208, 302 (1973).

    Article  Google Scholar 

  24. M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. (N.Y.) 202, 57 (1990).

    Article  Google Scholar 

  25. E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967).

    Article  Google Scholar 

  26. W. Sandhas, Acta Phys. Austriaca, Suppl. XIII, 679 (1974).

  27. E.O. Alt, P. Grassberger, W. Sandhas, Report E4-6688, JINR, Dunba 1972 and in Few Particle Problems in The Nuclear Interaction, edited by I. Slaus (North Holland, Amsterdam 1972) p. 299.

  28. W. Sandhas, Czech. J. Phys. B 25, 251 (1975).

    Google Scholar 

  29. H.A. Bethe, J. Goldstone, Proc. R. Soc. A 238, 551 (1957).

    MATH  Google Scholar 

  30. S. Sofianos, N.J. McGurk, H. Fiedeldey, Nucl. Phys. A 318, 295 (1979)

    Article  Google Scholar 

  31. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

    Article  MATH  Google Scholar 

  32. R.A. Malfliet, J. Tjon, Nucl. Phys. A 127, 161 (1969).

    Article  Google Scholar 

  33. S. Mattiello, diploma thesis: ‘‘Production of three-body clusters in asymetric matter’’ (in Italian), Trento, 2000, unpublished.

  34. M. Beyer, S.A. Sofianos, J. Phys. G 27, 2081 (2001).

    Google Scholar 

  35. V.N. Efimov, Yad. Fiz. 12, 1080 (1970) (Sov. J. Nuc. Phys. 12, 589 (1971)).

    Google Scholar 

  36. A. Schnell, PhD Thesis, Rostock, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beyer.

Additional information

A. Molinari

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, M., Strauss, S., Schuck, P. et al. Light clusters in nuclear matter of finite temperature. Eur. Phys. J. A 22, 261–269 (2004). https://doi.org/10.1140/epja/i2003-10237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10237-5

Keywords

Navigation