Skip to main content
Log in

The Binary Cascade

Nucleon nuclear reactions

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The Binary Cascade introduces a novel approach towards intra-nuclear cascade calculations. Like many QMD codes, it uses a detailed 3-dimensional model of the nucleus, and is based exclusively on binary scattering between reaction participants and nucleons within this nuclear model. Like a classical cascade, it uses optical potentials to describe the time evolution of particles passing through the nuclear medium. In the present paper we introduce the model, and investigate its predictive power for hadron spectra in nucleon nuclear reactions final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Mashnik, A.J. Sierk, J. Nucl. Sci. Tech. S2, 720 (2002); T.A. Gabriel, ORNL/TM-9727, Proceedings of LEP Experimenters’ Workshop on Shower Simulation, Geneva, Switzerland, January 29-31, 1985; J. Cugnon, C. Volant, S. Vuillier, Nucl. Phys. A 620, 475 (1997); Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000); G. Peter, D. Behrens, C.C. Noack, Phys. Rev. C 49, 3253 (1994); Hai-Qiao Wang, Xu Cai, Yong Liu, High Energy Phys. Nucl. Phys. 16, 101 (1992); A.S. Ilinov, A.B. Botvina, E.S. Golubeva, I.A. Pshenichnov, Sov. J. Nucl. Phys. 55, 734 (1992); A.V. Dementev, N.M. Sobolevsky, Nucl. Tracks Radiat. Meas. 30, 553 (1999); A. Fasso et al. , SLAC-REPRINT-1997-090 prepared for the 3rd Workshop on Simulating Accelerator Radiation Environments (SARE3), Tsukuba, Japan, 7-9 May 1997; D.V. Gorbatkov, V.P. Kryuchkov, Nucl. Instrum. Meth. A 374, 95 (1996); J.F. Briesmeister, LA-7396-M, Rev. 2 and citations therein.

    Google Scholar 

  2. M. Bleicher et al. , J. Phys. G 25, 1859 (1999); H. Sorge, Phys. Rev. C 52, 3291 (1995); K. Niita et al. , Phys. Rev. C 52, 2620 (1995); C. Hartnack, PhD Thesis, University of Frankfurt (1993); GSI Report 93-05; Jörg Aichelin, Phys. Rep. 202, 233 (1991).

    Google Scholar 

  3. J.P. Wellisch, Comput. Phys. Commun. 140, 65 (2001).

    Article  MATH  Google Scholar 

  4. GEANT4 Collaboration (S. Agostinelli et al. ), Nucl. Instrum. Meth. A 506, 250 (2003).

    Google Scholar 

  5. Particle Data Group Collaboration (K. Hagiwara et al. ), Phys. Rev. D 66, 1 (2002).

    Google Scholar 

  6. CERN High Energy Analysis Group records, preprint denominations CERN-HERA-YY. For example, E. Bracci, C. Burichetti, J.P. Droulez, E. Flaminio, C. Preti, Compilation of Differential Cross-Sections. Pi Induced Reactions.

  7. V. Lara, J.P. Wellisch, published in Annecy 2000, Proceedings of the IX International Conference on Calorimetry in High Energy Physics, Annecy, France, 9-14 October, 2000, Frascati Phys. Ser., Vol. XXI (2001) p. 449.

  8. M.E. Grypeos, G.A. Lalazissis, S.E. Massen, C.P. Panos, J. Phys. G 17, 1093 (1991).

    Article  Google Scholar 

  9. L.R.B. Elton, Nuclear Sizes (Oxford University Press, Oxford, 1961).

  10. A. DeShalit, H. Feshbach, Theoretical Nuclear Physics, Vol. 1: Nuclear Structure (Wyley, 1974).

  11. K. Stricker, H. McManus, J.A. Carr, Nuclear scattering of low energy pions, Phys. Rev. C 19, 929 (1979).

    Article  Google Scholar 

  12. M. Bleicher et al. , J. Phys. G 25, 1859 (1999).

    Google Scholar 

  13. R.A. Arndt, I.I. Strakovsky, R.L. Workman, Int. J. Mod. Phys. A 18, 449 (2003).

    Article  Google Scholar 

  14. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988); W. Cassing, U. Mosel, Prog. Part. Nucl. Phys. 25, 235 (1990); T. Maruyama, W. Cassing, U. Mosel, S. Teis, Prog. Theor. Phys. Suppl. 120, 283 (1995).

    Article  Google Scholar 

  15. M.M. Meier et al. , Differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110, 289 (1992).

    Google Scholar 

  16. J. Cugnon, C. Volant, S. Vuillier, Nucl. Phys. A 620, 475 (1997).

    Article  Google Scholar 

  17. M.M. Meier et al. , Differential neutron production cross sections and neutron yields from stopping-length targets for 113-MeV protons, Nucl. Sci. Eng. 102, 310 (1989).

    Google Scholar 

  18. W.B. Amian et al. , Differential neutron production cross sections for 597-MeV protons, Nucl. Sci. Eng. 115, 1 (1993).

    Google Scholar 

  19. W.B. Amian et al. , Differential neutron production cross sections for 800-MeV protons, Nucl. Sci. Eng. 112, 78 (1992).

    Google Scholar 

  20. V. Ivanchenko et al. , The GEANT4 hadronic verification suite for the cascade energy region. Talk given at the Conference for Computing in High-Energy and Nuclear Physics (CHEP03), La Jolla, CA, USA, 24-28 March 2003. e-Print Archive: physics/0306016.

  21. EXFOR database. http://www.nea.fr/html/dbdata/x4/ welcome.html

  22. J.F. Crawford et al. , Measurement of cross sections and asymmetry parameters for the production of charged pions from various nuclei by 585-MeV protons, Phys. Rev. C 22, 1184 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wellisch.

Additional information

Communicated by A. Molinari

Received: 19 December 2003, Revised: 5 March 2004, Published online: 7 September 2004

PACS:

21.60.Ka Nuclear structure: Monte Carlo models - 24.10.Lx Nuclear reactions: general: Monte Carlo simulations (including hadron and parton cascades and string breaking models)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folger, G., Ivanchenko, V.N. & Wellisch, J.P. The Binary Cascade. Eur. Phys. J. A 21, 407–417 (2004). https://doi.org/10.1140/epja/i2003-10219-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10219-7

Keywords

Navigation