Skip to main content
Log in

Is the proton electromagnetic form factor modified in nuclei?

  • Original Paper
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Guided by the recent experimental confirmation of the validity of the Effective Momentum Approximation (EMA) in quasi-elastic scattering off nuclei, we have re-examined the extraction of the Longitudinal and Transverse Response Functions in medium-weight and heavy nuclei. In the EMA we have performed a Rosenbluth separation of the available world data on 40Ca, 48Ca, 56Fe and 208Pb. We find that the Longitudinal Response Function for these nuclei is ”quenched” and that the Coulomb sum is not saturated, at odds with recent claims in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. McVoy, L. Van Hove, Phys. Rev. 125, 1034 (1962).

    Article  Google Scholar 

  2. T. de Forest jr., Nucl. Phys. A 414, 347 (1984).

    Article  Google Scholar 

  3. G. Orlandini, M. Traini, Rep. Prog. Phys. 54, 257 (1991).

    Article  Google Scholar 

  4. R. Altemus , Phys. Rev. Lett. 44, 965 (1980).

    Article  Google Scholar 

  5. M. Deady , Phys. Rev. C 28, 8 (1983) 631.

    Article  Google Scholar 

  6. A. Hotta , Phys. Rev. C 30, 87 (1984).

    Article  Google Scholar 

  7. M. Deady , Phys. Rev. C 33, 1897 (1986).

    Article  Google Scholar 

  8. C.C. Blatchley , Phys. Rev. C 34, 1243 (1986).

    Article  Google Scholar 

  9. S.A. Dytman , Phys. Rev. C 38, 800 (1988).

    Article  Google Scholar 

  10. K. Dow , Phys. Rev. Lett. 61, 1706 (1988)

    Article  Google Scholar 

  11. T.C. Yates , Phys. Lett. B 312, 382 (1993).

    Article  Google Scholar 

  12. C. Williamson , Phys. Rev. C 56, 3152 (1997).

    Article  Google Scholar 

  13. P. Barreau , Nucl. Phys. A 402, 515 (1983).

    Article  Google Scholar 

  14. Z.-E. Meziani , Phys. Rev. Lett. 52, 2130 (1984).

    Article  Google Scholar 

  15. Z.-E. Meziani , Phys. Rev. Lett. 54, 1233 (1985).

    Article  Google Scholar 

  16. C. Marchand , Phys. Lett. B 153, 29 (1985).

    Article  Google Scholar 

  17. A. Zghiche , Nucl. Phys. A 572, 513 (1994).

    Article  Google Scholar 

  18. D.T. Baran , Phys. Rev. Lett. 61, 400 (1988).

    Article  Google Scholar 

  19. J.P. Chen , Phys. Rev. Lett. 66, 1283 (1991).

    Article  Google Scholar 

  20. Z.-E. Meziani , Phys. Rev. Lett. 69, 41 (1992).

    Article  Google Scholar 

  21. J.V. Noble, Phys. Rev. Lett. 46, 412 (1981).

    Article  Google Scholar 

  22. L.S. Celenza , Phys. Rev. Lett. 53, 891 (1984).

    Google Scholar 

  23. P.J. Mulders, Nucl. Phys. A 459, 525 (1986).

    Article  Google Scholar 

  24. M. Ericson, M. Rosa-Clot, Z. Phys. A 324, 373 (1986).

    Google Scholar 

  25. G.E. Brown, M. Rho, Phys. Lett. B 222, 324 (1989).

    Article  Google Scholar 

  26. J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).

    Google Scholar 

  27. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  28. H. Kurasawa, T. Suzuki, Phys. Lett. B. 208, 160 (1988)

    Article  Google Scholar 

  29. G. Do Dang, Nguyen Van Giai, Phys. Rev. C 30, 731 (1984).

    Article  Google Scholar 

  30. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 62, 391 (1989)

    Article  Google Scholar 

  31. K. Wehrberger, F. Beck, Nucl. Phys. A 491, 587 (1989).

    Article  Google Scholar 

  32. R. Brockmann, H. Toki, Phys. Rev. Lett. 68, 3408 (1992).

    Article  Google Scholar 

  33. J.C. Caillon, J. Labarsouque, Nucl. Phys. A 595, 189 (1995).

    Article  Google Scholar 

  34. K. Saito, K. Tsushima, A.W. Thomas, Phys. Lett. B 465, 27 (1999).

    Article  Google Scholar 

  35. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988).

    Article  Google Scholar 

  36. M. Traini, S. Turck-Chièze, A. Zghiche, Phys. Rev. C 38, 2799 (1988)

    Article  Google Scholar 

  37. M. Traini, Nucl. Phys. A 694, 325 (2001).

    Article  Google Scholar 

  38. D. Onley, Y. Yin, L.E. Wright, Phys. Rev. C 45, 1333 (1992)

    Article  Google Scholar 

  39. R. Rosenfelder, Ann. Phys. (N.Y.) 128, 188 (1980).

    Google Scholar 

  40. P. Gueye , Phys. Rev. C 60, 044308 (1999).

    Article  Google Scholar 

  41. J. Jourdan, Phys. Lett. B 353, 189 (1995)

    Article  Google Scholar 

  42. J. Morgenstern, Z.-E. Meziani, Phys. Lett. B 515, 269 (2001).

    Article  Google Scholar 

  43. D. Day , Phys. Rev. C 48, 1849 (1993).

    Article  Google Scholar 

  44. A. Fabrocini, S. Fantoni, Nucl. Phys. A 503, 375 (1989).

    Article  Google Scholar 

  45. M. Traini, G. Orlandini, W. Leidemann, Phys. Rev. C 48, 172 (1993).

    Article  Google Scholar 

  46. M. Soyeur, G.E. Brown, M. Rho, Nucl. Phys. A 556, 355 (1993).

    Article  Google Scholar 

  47. H. Kurasawa, private communication (2002).

  48. G.G. Simon , Nucl. Phys. A 333, 381 (1980).

    Article  Google Scholar 

  49. C. Herberg , Eur. Phys. J. A 5, 131 (1999).

    Article  Google Scholar 

  50. JLab experiment E01-016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Morgenstern.

Additional information

Received: 1 November 2002, Published online: 15 July 2003

PACS:

25.30.Fj Inelastic electron scattering to continuum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgenstern, J., Meziani, ZE. Is the proton electromagnetic form factor modified in nuclei?. Eur. Phys. J. A 17, 451–455 (2003). https://doi.org/10.1140/epja/i2002-10191-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2002-10191-8

Keywords

Navigation