Skip to main content

Minimal chimera states in phase-lag coupled mechanical oscillators

Abstract

We obtain experimental chimera states in the minimal network of three identical mechanical oscillators (metronomes), by introducing phase-lagged all-to-all coupling. For this, we have developed a real-time model-in-the-loop coupling mechanism that allows for flexible and online change of coupling topology, strength and phase-lag. The chimera states manifest themselves as a mismatch of average frequency between two synchronous and one desynchronized oscillator. We find this kind of striking “chimeric” behavior is robust in a wide parameter region. At other parameters, however, chimera state can lose stability and the system behavior manifests itself as a heteroclinic switching between three saddle-type chimeras. Our experimental observations are in a qualitative agreement with the model simulation.

References

  1. 1.

    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  2. 2.

    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    ADS  Article  Google Scholar 

  3. 3.

    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    C.R. Laing, Physica D 238, 1569 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    C.R. Laing, Phys. Rev. E 81, 066221 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    C.R. Laing, Physica D 240, 1960 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    A.E. Motter, Nat. Phys. 6, 164 (2010)

    Article  Google Scholar 

  9. 9.

    O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Phys. Rev. E 81, 065201 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    M. Wolfrum, O.E. Omelchenko, S. Yanchuk, Yu. Maistrenko, Chaos 21, 013112 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    M. Wolfrum, O.E. Omelchenko, Phys. Rev. E 84, 015201(R) (2011)

    ADS  Article  Google Scholar 

  12. 12.

    I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    Yu. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V. Maistrenko, Int. J. Bifurc. Chaos Appl. Sci. Eng. 24, 1440014 (2014)

    Article  Google Scholar 

  14. 14.

    A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, Chaos 26, 094815 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    L. Larger, B. Penkovsky, Y.L. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    L. Larger, B. Penkovsky, Y.L. Maistrenko, Nat. Commun. 6, 7752 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  19. 19.

    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  20. 20.

    L. Schmidt, K. Schönleber, K. Krischer, V. Garca-Morales, Chaos 24, 013102 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Nat. Phys 14, 282 (2018)

    Article  Google Scholar 

  22. 22.

    E.A. Marten, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Yu. Maistrenko, Sci. Rep. 4, 6379 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    J. Wojewoda, K. Czolczynski, Yu. Maistrenko, T. Kapitaniak, Sci. Rep. 6, 34329 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    T. Chouzouris, I. Omelchenko, A. Zakharova, J. Hlinka, P. Jiruska, E. Schöll, Chaos 28, 045112 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    J. Hizandis, N.E. Kouvaris, G. Zamora-Lopez, A. Diaz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019)

    ADS  Article  Google Scholar 

  28. 28.

    A.E. Motter, S.A. Myers, M. Angel, T. Nishikawa, Nat. Phys. 9, 191 (2013)

    Article  Google Scholar 

  29. 29.

    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Nat. Commun. 5, 4709 (2014)

    Article  Google Scholar 

  30. 30.

    J.C. Gonzales-Avella, M.G. Cosenza, M.S. Miguel, Physica A 399, 24 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    M. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    E. Shoell, Eur. Phys. J. Special Topics 225, 891 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    O.E. Omel’chenko, Nonlinearity 31, R121 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    P. Ashwin, O. Burylko, Chaos 25, 013106 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Yu. Maistrenko, Chaos 28, 011103 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    P. Aswin, O. Burylko, Y. Maistrenko, Physica D 237, 454 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    C. Bick, Phys. Rev. Lett. E 97, 050201(R) (2018)

    ADS  Article  Google Scholar 

  38. 38.

    Y. Maistrenko, S. Brezetsky, P. Jaros, R. Levchenko, T. Kapitaniak, Phys. Rev. E 95, 010203 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    P. Aswin, G.P. King, J.W. Swift, Nonlinearity 3, 585 (1990)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Ebrahimzadeh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh, P., Schiek, M., Jaros, P. et al. Minimal chimera states in phase-lag coupled mechanical oscillators. Eur. Phys. J. Spec. Top. 229, 2205–2214 (2020). https://doi.org/10.1140/epjst/e2020-900270-4

Download citation